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Abstract

Let K be a complete nonarchimedean local field of characteristic
zero having a residue field of odd characteristic. Let L ⊃ K be the
unramified quadratic extension and let ` be its residue field. For a
discrete co-compact subgroup Γ of the unitary group PU (3 ,L), a one-
dimensional rigid analytic space on which Γ acts discontinuously is
constructed. The quotients of this space by normal subgroups ∆ ⊂
Γ of finite index and without elements of finite order are projective
algebraic curves, on which the finite group Γ/∆ acts. The reduction of
the space consists of hermitian curves and projective lines intersecting
in `-valued points. 1

Introduction

Let L ⊃ K is the unramified quadratic extension of a local field K of charac-
teristic zero with residue field k of odd order q. We construct a uniformisation
of curves by discrete co-compact subgroups Γ of the unitary group PU (3 ,L).
The construction has two ingredients. First a Γ-invariant subset of the affine
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building B of the group PU (3 ,L) is determined. Then this Γ-invariant sub-
set is used to construct a one-dimensional uniformising space on which Γ acts
discretely with proper quotients.

The building B of the group PU (3 ,L) is a (q3 + 1, q + 1)-tree. The Γ-
invariant subset is a union of (q + 1, q + 1)-subtrees that are subbuildings
belonging to subgroups PU (2 ,L) and that intersect pairwise in at most a
vertex. We require that this subset contains all the vertices that are contained
in q3 + 1 edges. If the Γ-invariant subset of the building differs from B, then
the complement consists of isolated vertices.

The uniformising space is constructed by associating to each PU (2 ,L)-
building in our Γ-invariant set a rigid analytic variety. This rigid analytic
variety is choosen in such a way that Γ

⋂
P(U (1 ,L)× U (2 ,L)) acts on it

discretely with proper quotients. Here P(U (1 ,L)× U (2 ,L)) ⊂ PU (3 ,L)
is the stabiliser of the subbuilding. We take a suitable open admissable
subspace of each of these rigid varieties and glue them according to the
intersections of the PU (2 ,L)-buildings in our Γ-invariant subset of B. For
the glueing to be possible, it is necessary that the group PU(3, `) acts on the
components of the reduction of the analytical space belonging to a PU (2 ,L)-
building that correspond to vertices contained in q3 + 1 edges of B. Here `
denotes the residue field of L. Finally, a component has to be added for each
vertex in B that is not contained in the Γ-invariant subset. The analytic
space we associate to a subbuilding belonging to a group PU (2 ,L) in our
construction is an étale covering of the p-adic upper halfplane Ω1. Over a
suitable field extension this covering is isomorphic to a connected component
of Drinfelds étale covering of the p-adic upper halfplane. The components of
the reduction of this space are hermitian curves.

Let us briefly compare our construction with the uniformisation of curves
over the field of complex numbers C by discrete subgroups with finite co-
volume of SL(2,R). Then the uniformising space is a hermitian symmetric
space. This is the complex unit ball. The quotient of this symmetric space by
the discrete group is either compact or non-compact, depending on whether
the discrete group is co-compact or has only finite co-volume. If the quotient
is non-compact it can always be compactified.

Over the completion of the algebraic closure Cp of the field K every
algebraic curve with bad reduction has a uniformisation as a quotient of a
suitable choosen rigid analytic variety by a discrete subgroup of PGL(2,Cp).
The discrete group acts on a tree. Since the building of PU (3 ,L) is also
a tree, it does not seem unreasonable to expect for discrete subgroups of
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PU (3 ,L) to act discretely on a rigid analytic variety of dimension one with
proper quotients.

If the characteristic of the local field is zero, then all discrete subgroups
with finite co-volume of the linear algebraic group are co-compact. There-
fore the idea of compactifying some symmetric space as in the real case seems
at first absurd. We make sense of this situation by reverse engineering the
notion of compactification. First we construct a Γ-invariant ”open” sub-
space of the building B that omits a Γ-invariant set of isolated vertices. The
”compactification” of this ”open” subspace is obtained by adding the missing
vertices and equals the building itself. Then we construct a suitable analytic
variety for the open subspace of the building on which the group Γ acts dis-
continuously. Finally, this analytic space is compactified by adding suitable
affinoid spaces for the vertices of the building that are missing in the open
subspace.

This construction, however, does not give a bijection between ”open” sub-
spaces of the building B and commensurability classes of discrete co-compact
subgroups of PU (3 ,L). A discrete co-compact subgroup Γ ⊂ PU (3 ,L) sta-
bilises at most finitely many (possibly zero) suitable ”open” subspaces of
the building. On the other hand a suitable ”open” subset of the building is
stabilised by at most one commensurability class of discrete co-compact sub-
groups of PU (3 ,L). Almost all arithmetic subgroups of PU (3 ,L) preserve
some suitable ”open” subspace of the building.

We now give a brief outline of the article. The first four sections study the
building B of PU (3 ,L) and the action of discrete groups on B. In §1 we recall
some basic definitions and properties of the group PU (3 ,L) and its building
B. In §2 we discuss (partial) spreads of the set of isotropic points for the uni-
tary form over the residue field ` of the field L. Using such (partial) spreads,
we define coverings by subbuildings of the building of the group PU(3, `)
over the residue field. In §3 we show that B can be covered by PU (2 ,L)
subbuildings in such a way that two such PU (2 ,L) buildings intersect in at
most a vertex. We give a precise definition of the type of coverings of B by
PU (2 ,L)-buildings we need. We show that the automorphism group of such
a covering of B is a discrete subgroup of PU (3 ,L).

In §4 it is shown that almost all arithmetic groups Γ ⊂ PU (3 ,L), preserve
a Γ-invariant subset of B that is covered by PU (2 ,L)-buildings having the
required properties.

In sections §5 till §6 we define and study a finite étale covering of the
p-adic upper halfplane Ω1 in detail. In §5 we construct the étale covering Σ
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over the field L by glueing affinoids.
In §6 the covering is embedded into a projective plane. To do this the

space Σ over the field L is constructed by glueing open admissable subsets of
Σ together. These admissable subsets are embedded in two projective planes
on which the group P(U (1 ,L)× U (2 ,L)) acts linearly. The embeddings
depend on a discrete co-compact subgroup Γb ⊂ P(U (1 ,L)× U (2 ,L)) and
are invariant under the action of this subgroup. Then Σ is obtained by glueing
these admissable subsets. As a result one has locally defined coordinates on
Σ such that the discrete group Γb ⊂ P(U (1 ,L)× U (2 ,L)) acts linearly.

In §7 we recall some properties of the set Y s ⊂ P2
L consisting of the points

in P2
L that are stable for all maximal K-split tori in PU (3 ,L). In particular,

we define a PU (3 ,L)-equivariant map from the set Y s to the building B of
the group PU (3 ,L).

This map is used in §8 to define an open admissable subspace Σ◦ ⊂ Σ.
The spaces Σ◦ for suitable subgroups P(U (1 ,L)× U (2 ,L)) ⊂ PU (3 ,L) can
be glued together to form a space on which a co-compact discrete group Γ ⊂
PU (3 ,L) acts discontinuously. This is done in §9. The quotient by the group
Γ is not always complete, but it can be compactified. The construction of the
uniformising space is analogous to the construction of Σ by glueing together
admissable subspaces. In §10 the space is compactified Γ-equivariantly.

In §11 we describe the reduction, a semistable reduction and determine
the genus of the quotients. In §12 we show that our variety differs from
certain known moduli spaces. We also speculate on a possible generalisation
of the construction to other groups.

In §13 we discuss some examples of spreads, discrete groups and algebraic
curves.
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1 The group PU (3 ,L) and its building

1.1. The field. Let L ⊃ K be as above. We write K◦ (L◦) for the ring of
integers of K (L). The residue fields are denoted by k and `. By q we denote
the number of elements in the residue field of K. Then q is some power of
p := char(k) > 2. Let v be the additive valuation on L, normalised such
that v(L∗) = Z. The absolute value of x in L is |x| := q−2v(x). We fix an
uniformizer π in L◦, v(π) = 1.

1.2. The unitary groups. Let V ∼= L3 be a vector space equiped with a
non-degenerated unitary form h. Then there exists an L-basis e1, e0, e2 of
V , such that h has the standard form h(x, y) = x1y2 + x2y1 + x0y0. Here
x1, x0, x2 are the coordinates of V (or P2

L := P(V )) with respect to the basis
e1, e0, e2 and − denotes the action of the nontrivial element of the Galois
group Gal(L/K). The image of a vector v ∈ V in P(V ) will be denoted
by [v]. By U(3, L) we will mean the group of three by three matrices with
coefficients in L that act on V and preserve the form h. The subgroup
SU (3 ,L) ⊂ U(3, L) consists of the elements having determinant one. The
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quotients of these groups by diagonal elements are denoted by PU (3 ,L) and
PSU(3, L), respectively. Occasionally we will view these groups as a group
G(K) of K-rational points of a linear algebraic group G defined over K.

1.3. The building. In the L-module V we introduce the two L0-submodules
M0 :=< e0, e1, e2 > and M1 :=< e0, πe1, e2 >. For a L0-submodule M of V ,
we write [M] for the equivalence class {λ ·M | λ ∈ L∗}.

The building B of PU (3 ,L) is the tree, whose vertices are given by the
PU (3 ,L) images of [M0] and [M1]. The edges (or chambers) are given by
the PU (3 ,L) images of {[M0], [M1]}. Since L/K is unramified, a vertex of
type g([M0]) with g ∈ SU (3 ,L) is contained in q3 + 1 edges while the other
vertices are contained in q + 1 edges. Both type of vertices are special, i. e.
they are stabilized by the full Weyl group of the root system. (See [A-B] def.
10.18.) We have a type map τ that associates to a vertex v ∈ B its type
τ(v) ∈ {0, 1}. The vertices v corresponding to equivalence classes g([M0]),
g ∈ PU (3 ,L), are of type τ(v) = 0 and are called hyperspecial. They remain
special for any unramified extension of the field K. (See [Ti] §1.10.) The
vertices v corresponding to equivalence classes g([M1]) have type τ(v) = 1.

Let S ⊂ G(K) be a maximal K-split torus. We may assume that S is
the torus that acts diagonally with respect to the basis e0, e1, e2 of V . Let
A ⊂ B be the apartment associated to the maximalK-split torus S(K) ∼= K∗.
Then S acts on A by translations. The vertices of A are [Mn], n ∈ Z where
M2n =< e0, π

ne1, π
−ne2 > and M2n+1 =< e0, π

n+1e1, π
−ne2 >. We will often

identify the apartment A with the real line R. This will always be done in
such a way that the vertices correspond to the set of integers. We will then
write n for the vertex [Mn]. This identification of the apartment A with the
real line R gives a distance dB(a, b) := |a − b| on A. This distance can be
extended to the entire building B.

1.4. Embedding the building into the building of PGL(3, L). The
group PU (3 ,L) is a subgroup PGL(3, L) fixed by an involution. Therefore
the building B of the group PU (3 ,L) can be obtained as the set of points
fixed by an involution acting on the building B of the group PGL(3, L).

Let us first recall the description of the building B in terms of equivalence
classes of L◦-modules. The vertices of B are given by the equivalence classes
of L◦-modules in the L-module V ∼= L3. The maximal simplices or chambers
in the building are triangles. Three vertices v0,v1,v2 ∈ B form a chamber
if and only if the corresponding equivalence classes of L◦-modules can be
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represented by modules Mvi , i = 1, 2, 3 that satisfy: πMv0 ⊂ Mv1 ⊂ Mv2 ⊂
Mv0 .

Let M0 :=< e0, e1, e2 >, M1 :=< e0, πe1, e2 > and M2 :=< πe0, πe1, e2 >
be three L◦-modules. Then [M0], [M1], [M2] define a triangle in the building
B.

Using the unitary form h on V ∼= L3 one defines the dual M∨ of a L◦-
module M as being the L◦-module M∨ := {x ∈ V | ∀(y ∈M) h(x, y) ∈ L◦}.
Then the map M → M∨ induces an involution τ on the vertices of the
building B. The map τ can be extended to the entire building B. Let Bτ ⊂ B
be the set of points that are fixed by the involution τ . Then Bτ inherits
a simplicial structure from the building B. The simplices of Bτ are the
intersections of Bτ with simplices of the building B that are non-empty. In
fact Bτ with this simplicial structure is the building B of the group PU (3 ,L).

1.5. The building of the group PU(3, `). Let ` ∼= Fq2 be the residue field
of L. Let the vector space `3 be equiped with a non-degenerated unitary
form h`(x, y). The group PU(3, `) acts on the space `3 and on P2

` preserving
the unitary form h`(x, y). The group preserves the hermitian curve H ⊂ P2

`

defined by h`(x, x) = 0. The `-valued isotropic points in P2
` form a subset

H(`) ⊂ P2(`) of order ]H(`) = q3 + 1.
The vertices of the building of the group PU(3, `) correspond to the

isotropic points of P2(`). Two such isotropic points define an apartment of
the building.

The building can also be defined as the link of a hyperspecial vertex
v ∈ B. (See [A-B] definition A.19 and proposition 4.9.) The link lkB(v) of a
vertex v ∈ B consists of the vertices v′ ∈ B that form an edge e′ with v.

Let [Mv] be the equivalence class of L◦-modules belonging to the hyper-
special vertex v. The building lkB(v) is the building of the group PU(3, `)
that acts on P2

L = P(Mv ⊗ `) preserving the unitary form h⊗ `.
The link lkB(v1) for a non-hyperspecial vertex v1 ∈ B is isomorphic to

the building of a group PU(2, `).

2 Spreads and buildings

Spreads are partitions of the set of isotropic points in P2
` into subsets of q+ 1

isotropic points. We use partial spreads to define partial coverings of the
building of the group PU(3, `) by buildings belonging to subgroups SU(2, `).
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2.1 Definition. A spread of the `-valued isotropic points in P2
` for a non-

degenerated hermitian form h`(x, y) consists of a partition of the set of
isotropic points into lines P1

` that each contain q + 1 isotropic points. Since
P(`) contains q3 + 1 isotropic points, a spread consists of q2 − q + 1 distinct
lines. A partial spread consists of a non-empty set of lines P1

` that does not
cover the entire pointset and such that no isotropic point is contained in
more than one line. Each line contains q + 1 isotropic points.

In [B-E-K-S] different spreads of the hermitian curve are studied. More-
over, they give examples of partial spreads that are maximal (See [B-E-K-S]
theorems 4.1 and 4.2.). However, they have an extra condition on these par-
tial spreads. So it might be that they can be extended if one drops this extra
condition. These results are also discussed in [B-E] §6.2.

2.2 Example. Let x ∈ P2
` be an `-valued anisotropic point and let x⊥ ⊂ P2

`

be the line orthogonal to the point x. Then the lines P1
` orthogonal to the

`-valued anisotropic points contained in the line x⊥ together with the line
x⊥ form a spread. The group P (U(1, `) × U(2, `)) that stabilizes x and x⊥

preserves the spread.
In propositions 13.3 and 13.4 we describe the spreads that are invariant

under the groups S3 n C2
q+1 and C2

q+1.

2.3 Definition. Let G0 ⊂ PU(3, `) be a finite group. A G0-invariant partial
spread is called G0-adapted if every isotropic point with non-trivial stabiliser
in G0 is contained in the union of the spread.

2.4 Example. A Singer cycle Cq2−q+1. Let G0 ⊂ PU(3, `) be a cyclic group
of order q2 − q + 1. Then G0 is called a Coxeter torus or Singer cycle of the
unitary group. The group G0 has q + 1 orbits each consisting of q2 − q + 1
points on the set of `-valued isotropic points. In particular, if a G0-invariant
spread exists, it would consist of a G0-orbit of a single line P1

` . Such a cyclic
spread does not exist for p > 2. (See [B-E-K-S] theorem 3.1.)

2.5 Definition. If the hermitian form is non-degenerated on the line P1
` ⊂

P2
` , then the stabilizer of the line is a subgroup P (U(1, `)×U(2, `) ⊂ PU(3, `).

To a partial spread of the set H(`) of `-valued isotropic points in P2
` corre-

sponds a set of subgroups P (U(1, `)× U(2, `). The buildings corresponding
to these groups are sub-buildings of the building of PU(3, `). Since the lines
of the spread have no isotropic points in common, the sub-buildings corre-
sponding to these lines do not have a vertex in common. We call a covering
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of the building of PU(3, `) by SU(2, `)-sub-buildings that correspond to a
partial spread of the isotropic points of P2(`) a transversal covering. If
the partial spread is a complete spread, then the covering covers the entire
building. Then it is called complete.

2.6 Remark. Complete transveral coverings of the PU(3, `)-building by
SU(2, `)-sub-buildings exist, since spreads exist. By example 2.2, there exist
for certain subgroups G0 ⊂ PU(3, `) spreads that are G0-invariant.

2.7 Lemma. Let h` denote a non-degenerated hermitian form on P2
` . Let

x, y ∈ P2
` be two distinct `-valued anisotropic points. Let z ∈ P2

` be the
unique point that is orthogonal to both x and y w.r.t. h`. Then the following
statements are equivalent:

i) The restriction of the hermitian form h` to the line Lx,y :=< x, y > is
non-degenerated.

ii) The point z ∈ P2
` that is orthogonal to both x and y is anisotropic.

iii) h`(x, x)h`(y, y)− h`(x, y)h`(y, x) 6= 0.

iv) The buildings belonging to the groups PU(2, `) that stabilise x and y
are disjoint.

Proof. The hermitian form h` is non-degenerated. Hence h`(z, z) 6= 0 if the
restriction of h` to the line Lx,y =< x, y > is non-degenerated. If h`(z, z) =
0, then z ∈ Lx,y and the restriction of h` to the line Lx,y =< x, y > is
degenerated. Therefore statements (i) and (ii) of the lemma are equivalent.

Let u ∈ Lx,y be the point u := h`(y, x)x − h`(x, x)y. Then h`(u, x) =
h`(y, x)h`(x, x)−h`(x, x)h`(y, x) = 0 and h(u, u) = h`(x, x)·(h`(x, x)h`(y, y)−
h`(y, x)h`(x, y)). Therefore the restriction of h` to the line Lx,y =< x, y > is
degenerated if and only if h(u, u) = 0. Hence statements (i) and (iii) of the
lemma are equivalent.

Let Gx and Gy be the stabilisers in the group PU(3, `) of the points x and
y, respectively. Then the groups Gx and Gy are isomorphic to P (U(2, `) ×
U(1, `)). A subgroup PU(2, `) of Gx acts on the line x⊥ ⊂ P2

` . Its Borel
subgroups are the stabilisers of the `-valued isotropic points in x⊥. Hence
the subgroups PU(2, `) of Gx and Gy have a Borel group in common if and
only if the point z⊥x, y is isotropic.

Let bx and by be the PU(2, `)-buildings belonging to x and y, respec-
tively. The intersection bx

⋂
by is non-empty if and only if the groups
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PU(2, `) in the stabilisers of x and y have a Borel group in common. In
particular, bx ∩ by = ∅ if and only if the point z⊥x, y is anisotropic.

3 A forest of trees

We define (partial) coverings T of B by PU (2 ,L)-subbuildings b such that
an edge e ∈ B is contained in at most one building b ∈ T and such that all
hyperspecial vertices of the building are contained in the union

⋃
b∈T b.

These coverings T are the p-adic analogs of the coverings of the building
of the group PU(3, `) that correspond to (partial) spreads. A subbuilding
b ⊂ B corresponds to the line P1

L ⊂ P2
L that is stabilised by the group

PU (2 ,L) determined by b. In particular, a (partial) covering T defines a
(partial) partition of the set of isotropic points in P2(L).

We show that the automorphism group Aut(T ) ⊂ PU (3 ,L) is a discrete
subgroup. We furthermore prove that for a discrete co-compact subgroup
Γ ⊂ PU (3 ,L) there exist at most finitely many Γ-invariant coverings T of
B.

3.1 Remark. Let NL/K : L −→ K be the norm map. Since the ex-
tension L ⊃ K is an unramified and quadratic, NL/K((L◦)∗) = (K◦)∗ and
K∗/NL/K(L∗) = {1, π} hold. In particular, one can rescale any point x ∈
P2(L) such that h(x, x) ∈ {0, 1, π}. The three types of points x ∈ P2(L)
correspond to three types of lines x⊥ ∼= P1

L ⊂ P2
L.

If h(x, x) = 0, then the unitary form on x⊥ is degenerated. The line x⊥

contains a single L-valued isotropic point, namely the point x itself.
If h(x, x) = π, then the hermitian form on x⊥ does not represent 0 over

the field L. The stabiliser of the line x⊥ is a compact subgroup of PU (3 ,L).
If h(x, x) = 1, then the line x⊥ contains infinitely many L-valued isotropic

points. The stabiliser of the line x⊥ in the group PU (3 ,L) is a group
P(U (1 ,L)× U (2 ,L)). The group U (1 ,L) is a finite cyclic group of order
q + 1 acting trivially on the line x⊥.

Every subgroup PU (2 ,L) ⊂ PU (3 ,L) stabilises a unique anisotropic
point x ∈ P2(L) such that h(x, x) = 1 after some rescaling. Hence we
have a bijection between PU (2 ,L)-buildings b ⊂ B and anisotropic points
x ∈ P2(L) such that h(x, x) = 1 after rescaling.

3.2 Definition. Let b1,b2 ⊂ B be two sub-buildings belonging to sub-
groups PU (2 ,L) ⊂ PU (3 ,L). We say that the buildings b1 and b2 intersect
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transversally if they have no edge in common. The trees b1 and b2 are called
transversal if they intersect transversally. If b1 ∩ b2 6= ∅, then the vertex
v := b1 ∩ b2 is hyperspecial.

Let v ∈ B be a hyperspecial vertex. Let b1, . . . ,bs ⊂ B be subbuildings
belonging to subgroups PU (2 ,L) ⊂ PU (3 ,L). We assume that the buildings
intersect transversally in the hyperspecial vertex v. Then

⋂s
i=1 bi = v.

The buildings lkbi(v), i = 1, . . . , s form a transversal covering of the
PU(3, `)-building lkB(v). Here lkbi(v) denotes the PU(2, `)-building that
consists of the vertices v′ ∈ bi that form an edge with the vertex v.

Let [Mv] be the equivalence class of L◦-modules belonging to the vertex
v. Each anisotropic point x ∈ P(Mv⊗`) can be lifted to a point x ∈ P2

L. The
point x ∈ P2

L is stabilized by a unique subgroup PU (2 ,L) ⊂ PU (3 ,L). This
subgroup PU (2 ,L) determines a subbuilding b ⊂ B. The edges e ∈ b that
contain the vertex v are uniquely determined by the point x ∈ P(Mv ⊗ `).

Therefore each transversal covering of the building lkB(v) can be lifted
to characteristic zero and gives a set of PU (2 ,L)-buildings that intersect
transversally at the vertex v.

3.3 Definition. Let T be a set of PU (2 ,L)-sub-buildings b ⊂ B that in-
tersect transversally. If all hyperspecial vertices v ∈ B are contained in the
union

⋃
{b ∈ T } ⊂ B, then we call T an (almost complete) transversal cov-

ering of the building B. A transversal covering T of B is called complete
if the union of the buildings b ∈ T equals the entire building B. If T is
complete, then an edge e ∈ B is contained in a unique tree b ∈ T .

Let v1 ∈ B be a non-hyperspecial vertex that is not contained in the union
of the buildings b ∈ T . Since all the vertices that form an edge with v1 are
hyperspecial, they are contained in the union |T | :=

⋃
{b ∈ T }. Therefore

only isolated vertices are omitted from the building B.

3.4 Example. Let us give an example of a torsion-free discrete co-compact
subgroup Γ ⊂ PU (3 ,L) that leaves invariant a complete transversal covering
T of the building B. Let v ∈ B be a hyperspecial vertex and let Tv := {bi |
i = 1, . . . , q2 − q + 1} be a set of PU (2 ,L)-subbuildings of B such that for
all pairs b,b′ ∈ Tv, b 6= b′ the intersection equals b ∩ b′ = v. For each
PU (2 ,L)-building b ∈ Tv we fix a torsion-free discrete co-compact subgroup
Γb ⊂ SU (2 ,L) ∼= SL(2 ,K ) that acts transitively on the two types of vertices
contained in b. Then b/Γb consists of two vertices joined by q+1 edges. The
group Γ ⊂ PU (3 ,L) generated by the groups Γb with b ∈ Tv is a torsion-free
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discrete co-compact subgroup. The quotient B/Γ consists of q2 − q + 1 non-
hyperspecial vertices and a single hyperspecial vertex. Each non-hyperspecial
vertex is joined to the hyperspecial vertex by q + 1 edges. The covering
T := {γ(b) | γ ∈ Γ,b ∈ Tv} is a Γ-invariant complete transversal covering
of the building B.

In prop. 13.12 below more examples of complete transversal coverings in-
variant under the a discrete co-compact subgroup of PU (3 ,L) are discussed.

3.5 Notation. For a PU (2 ,L)-subbuilding b ⊂ B, we denote by Hb
∼=

P(U (1 ,L)× U (2 ,L)) ⊂ PU (3 ,L) the stabiliser of b. We denote by xb ∈
P2(L) the unique anisotropic point that is stabilised by the group Hb.

3.6 Definition. Let w, x, y, z ∈ P2(L) be four distinct points. We say that
the points w, x, y, z are in general position if and only if no three of them
are contained in a single line P1

L ⊂ P2
L. If four points in P2(L) are in general

position, then the subgroup of PGL(3, L) acting on P2
L that preserves the

set consisting of these four points is finite.

3.7 Lemma. Let T be an almost complete transversal covering of the building
B. Then the following holds:

i) Let b 6= b′ ∈ T . Then the unitary form on the line 〈xb, xb′〉 is non-
degenerated and non-compact.

ii) Let b,b′ ⊂ B, b 6= b′ be subbuildings. If xb′ ∈ x⊥b , then the intersection
b′ ∩ b consists of a single vertex.

Proof. let x ∈ P2(L) be the unique point x ⊥ 〈xb, xb′〉. Since the buildings b
and b′ intersect transversally, h(x, x) 6= 0 holds. Let us assume h(x, x) = π
and derive a contradiction.

Let f0 ∈ L3 be a vector such that x = [f0] holds. Let f1, f2 ∈ L3 be
vectors such that xb, xb′ ∈ 〈f1, f2〉 holds and, moreover, the hermitian form
equals πy1y1 + y2y2 w.r.t. these vectors. Any L-valued point y ∈ x⊥ such
that h(y, y) = 1 has the form y = [af1 + bf2] with a ∈ L◦ and b ∈ (L◦)∗. In
particular, such points are contained in the L◦-module M := 〈f0, f1, f2〉 and
have a non-zero reduction w.r.t. this basis. The L◦-module M corresponds
to a non-hyperspecial vertex v1 ∈ B. In particular, the edges e 3 v1 are
contained in the intersection b ∩ b′. This cannot be and statement (i) must
hold.
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Let us now prove statement (ii). Let x ∈ P2(L) be the unique point such
that x ⊥ xb, xb′ . Since xb ⊥ xb′ , the point x is such that h(x, x) = 1 holds.
In particular, the buildings b and b′ intersect transversally.

There exist vectors f0, f1, f2 ∈ L3, such that x = [f0], xb = [f1] and
xb′ = [f2]. Since h(fi, fi) = 1 for i = 0, 1, 2, the L◦-module 〈f0, f1, f2〉
corresponds to a hyperspecial vertex v0 ∈ B. Therefore v0 ∈ b∩b′. Since the
buildings intersect transversally, this is the only vertex in the intersection.

3.8 Proposition. Let T be an almost complete transversal covering of PU (2 ,L)-
buildings. Then the automorphism group Aut(T ) ⊂ PU (3 ,L) is discrete.

Proof. To prove the proposition, it is sufficient to show that for each hyper-
special vertex v ∈ B the stabiliser Aut(T )v ⊂ Aut(T ) of the vertex is finite.
To prove the finiteness of the group Aut(T )v, we will construct four build-
ings b0,b1,b2,b3 ∈ T , such that dB(v,bi) < R for some finite R ∈ R and,
moreover, the points xbi , i = 0, . . . , 3 are in general position. Then both the
Aut(T )v-orbit of the set {xbi | i = 0, . . . , 3} and the stabiliser in Aut(T )v
of this set are finite. In particular, the group Aut(T )v is finite. Hence the
group Aut(T ) ⊂ PU (3 ,L) is discrete.

Let v0 ∈ B be a hyperspecial vertex. We will use induction to construct
the four buildings b0,b1,b2,b3 ∈ T needed to establish the finiteness of the
group Aut(T )v0 .

Let us assume that for some i > 0, we have vertices vj and buildings
bj ∈ T for j = 0, . . . , i. Then we construct a vertex vi+1 and a building
bi+1 ∈ T such that vi+1 ∈ bi+1. For n,m ∈ N we will denote by bm,n ⊂ B,
n > m, the subbuilding belonging to the stabiliser of the line 〈xbn , xbm〉.

We establish the base case i = 0 by choosing a building b0 ∈ T such that
v0 ∈ b0.

Let us now construct a hyperspecial vertex vi ∈ B and a building bi ∈
T for 0 < i ≤ 3. Let us assume that we have constructed vertices vj
and buildings bj for 0 ≤ j < i. We choose a vertex v′ ∈ B such that
dB(v′,vi−1) = 2 and if i > 1 also dB(v′,vi−2) = dB(vi−1,vi−2) + 2. If i > 1,
then we assume that v′ 6∈ bj,i−1, j < i− 1. We then choose a vertex v′′ ∈ B
such that dB(v′′,v′) = 2 and dB(v′′,vi−1) = 4. If there exists a building
b′ ∈ T such that v′,vi−1 ∈ b′, then we choose the vertex v′′ 6∈ b′. We now
choose a building b ∈ T such that v′′ ∈ b and define bi := b. If v′ ∈ bi,
then we define vi := v′, otherwise we define vi := v′′.

By construction vi−1 6∈ bi, and if i > 1, then bi ∩ bj,i−1 = ∅ for 0 ≤
j < i − 1. In particular, by lemma 3.7 (ii) for i > 1 xbi 6∈ 〈xbj , xbi−1

〉 with
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0 ≤ j < i− 1. Moreover, if i > 2, then vi−1 6∈ bi−3,i−2 and bi ∩ bi−3,i−2 = ∅.
Therefore xbi 6∈ 〈xbi−3

, xbi−2
〉.

We claim that the points xbj , 0 ≤ j ≤ 3 are in general position and that
dB(v0,bj) = dB(v0,vj) ≤ 12, 0 ≤ j ≤ 3 holds. The details are left to the
reader.

3.9 Corollary. Let T be an almost complete transversal covering of the
building B. Let Γ1 6= Γ2 ⊂ PU (3 ,L) be discrete co-compact subgroups. If Γ1

and Γ2 both preserve T , then the groups Γ1 and Γ2 are commensurable.

Proof. The group 〈Γ1,Γ2〉 preserves T . Hence the subgroup 〈Γ1,Γ2〉 ⊂
PU (3 ,L) is discrete. Since Γ1,Γ2 ⊂ PU (3 ,L) are co-compact, the inter-
section Γ1 ∩ Γ2 ⊂ Γ1,Γ2 must be of finite index.

3.10 Proposition. Let Γ ⊂ PU (3 ,L) be a discrete co-compact subgroup.

i) If T is a Γ-invariant transversal covering and b ∈ T a subbuilding,
then the subgroup Γ ∩Hb ⊂ Hb is discrete and co-compact.

ii) There exist at most finitely many Γ-invariant almost complete transver-
sal coverings of B.

Proof. Let us first prove statement (i). The discreteness of Γ ∩Hb ⊂ Hb is
obvious. Let us therefore assume that the group Γ ∩ Hb ⊂ Hb is not co-
compact and derive a contradiction. There exists a vertex v ∈ b such that
the intersection b ∩ Γ · v consists of infinitely many Γ ∩Hb-orbits. Let the
set {vi ∈ b | i ∈ I} consist of representatives of the Γ ∩Hb-orbits in the set
b ∩ Γ · v. Then there exist elements γi ∈ Γ, i ∈ I, such that γi(vi) = v.
In particular, v ∈ γi(b) ∈ T , i ∈ I and the set {γi(b) | i ∈ I} is non-
finite. This cannot be, since T is a transversal covering and therefore the set
{b ∈ T | v ∈ b} is finite. Therefore statement (i) of the proposition holds.

Let us now prove statement (ii). It is sufficient to prove the statement for
groups Γ that contain no elements of finite order. To prove the statement we
assume that there exist infinitely many Γ-invariant transversal coverings T of
B and derive a contradiction. Let ϕ : B −→ B/Γ be the quotient map. For
each Γ-invariant transversal covering T the set {ϕ(b) | B ∈ T } consists of a
finite number of subgraphs of B/Γ. For b,b′ ∈ T such that ϕ(b) 6= ϕ(b′),
the intersection ϕ(b)∩ϕ(b′) contains no edges. In particular, there exist only
a finite number of distinct sets of subgraphs {ϕ(b) | b ∈ T } that can occur.
Therefore at least one such set is the image of infinitely many Γ-invariant
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transversal coverings. Moreover, since this set is the image of infinitely many
coverings T , at least one of the graphs ϕ(b) in this set must be the image of
infinitely many different buildings bi, i ∈ I.

Since the group Hbi ∩ Γ ⊂ Hbi is non-empty, there exist elements γi ∈
Hbi ∩ Γ and vertices vi ∈ b such that dB(vi, γi(vi)) = min{dB(γ(v),v) | γ ∈
Γ ∩Hbi ,v ∈ bi} := di. We fix such an element γi ∈ Γ ∩Hbi for each i ∈ I.
The element γi stabilises a unique anisotropic point in P2(L). Since this is
the point xbi , the element γi determines the building bi and the group Hbi .
The image ϕ([vi, γi(vi)]) ⊂ ϕ(b) is a closed path that uniquely determines
the building bi. Since there are infinitely many distinct buildings bi with
ϕ(bi) = ϕ(b), there are infinitely many such closed paths contained in ϕ(b).
Therefore there must be such paths that traverse an edge e ∈ ϕ(b) multiple
times.

For the building bi corresponding to such a closed path, there exists edges
e1, e2 ∈ bi such that ϕ(e1) = ϕ(e2) = e and dB(e1, e2) < di. Therefore there
exists an element γ ∈ Γ − Γ ∩ Hbi such that γ(e1) = γ(e2). Hence the
buildings γ(bi) and bi are distinct and have an edge in common. Since the
buildings γ(bi) and bi are contained in a transversal covering, this cannot
be. From this statement (ii) follows.

3.11 Definition. Let Γ ⊂ PU (3 ,L) be a discrete co-compact subgroup. Let
TΓ be a Γ-invariant almost complete transversal covering. The covering TΓ

is called Γ-adapted if every edge e ∈ B such that Γe 6= id is contained in a
building b ∈ TΓ.

Let T be a Γ-invariant transversal covering that is not Γ-adapted. Then
there exists a subgroup Γ′ ⊂ Γ of finite index that does not contain any
elements of finite order that preserve an edge not contained in |T | := ∪{b ∈
T }. In particular, the covering T is Γ′-adapted.

3.12 Remark. Not all discrete co-compact subgroups Γ ⊂ PU (3 ,L) pre-
serve a transveral covering of B. Indeed, if the stabiliser Γv0 ⊂ Γ of a hy-
perspecial vertex v0 does not preserve a transversal covering of the PU(3, `)-
building lkB(v0), then the group Γ does not preserve any transversal covering
T of B. By remark 2.4 this is the case if Γv0 contains a cyclic group Cq2−q+1.
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4 Arithmetic groups

We consider arithmetic discrete co-compact subgroups of PU (3 ,L). Over a
field of positive characteristic every unitary form of rank > 2 represents 0.
Therefore arithmetic discrete co-compact groups only exist if char(K) = 0.

We prove that almost all arithmetic groups Γ preserve an almost complete
transversal covering of the building B. We give some examples of arithmetic
discrete co-compact subgroups Γ ⊂ PU (3 ,L) that admit an almost complete
transversal covering of B.

4.1. Arithmetic groups. Let K be a totally real Galois extension of Q and
let L be a totally imaginary quadratic Galois extension of K. In particular,
L is a CM-field. Let p be a prime ideal of K that is inert in the extension
L⊃K.

Let h0 be a positive definite hermitian form on L3. Letm > 0 be an integer
such that the ideal pm is a principal ideal. Let sp ∈ pm be a generator of the
principal ideal pm.

Let OK and OL denote the ring of integers of the field K and L, respec-
tively. Let Λ ⊂ L3 be an integer hermitian lattice. Let GΛ be the algebraic
group defined over OK that preserves the lattice Λ and the hermitian form
h0.

Let Kp and Lp denote the completion of K and L, respectively, w.r.t. the
ideal p

ThenGΛ(OL[1/sp]) is a discrete co-compact subgroup of the group PU (3 ,Lp).
Note that the group does not depend on the choice of the generator sp. This
is the type of arithmetic groups we consider.

4.2. The special genus. Let Val(K) denote the set of valuations of K.
For ν ∈ Val(K) we denote by Kν the completion of K w.r.t. ν. We put
Lν := L⊗ Kν .

If the valuation is archimedean, then Kν
∼= R and Lν

∼= C, since L is an
imaginary quadratic extension of a totally real field K. If ν corresponds to
an inert or ramified prime ideal in the extension L ⊃ K, then Lν is equal to
to the completion with respect to ν. If the prime ideal corresponding to ν
splits, then Lν is equal to the product of the completions of L w.r.t. the two
primes into which the prime ideal corresponding to ν splits.

Let V be the vector space V := L3 equiped with the positive hermitian
form h0. For the convenience of the reader, we recall the definition of the
special genus gen◦(Λ) of Λ (See [S] definition 1.7):

16



gen◦(Λ) := {Λ′ | ∃(g ∈ U(V, h0)) ∀(ν ∈ Val(K)) ∃(h ∈ SU(V ⊗ Kν , h0)) Λ ⊗
OKν

= g(h(Λ′ ⊗OKν
))}

4.3 Proposition. Let p 6 | disc(Λ). For a vertex v of type 0 of the building
of the group PU (3 ,Lp) we denote by Mv the OLp

-module corresponding to

the vertex.

i) The lattices Λv := Λ[ 1
sp

]
⋂
Mv are contained in gen◦(Λ) and a repre-

sentative of every isomorphism class of lattices in gen◦(Λ) occurs as a
lattice Λv for some hyperspecial vertex v of the building..

ii) The arithmetic group GΛ(OL[ 1
sp

]) has ]gen◦(Λ) orbits on hyperspecial

vertices in B.

Proof. In [S] the lattices Λ′ ∈ gen◦(Λ) are studied using the neighbourhood
method. In particular, the definition of the neighbourhood of a lattice Λ
(See [S] definitions 2.1 and 2.3) w.r.t. the prime ideal p ⊂ L is such that
the lattices in the neighbourhood are exactly the integer lattices Λ[ 1

sp
]
⋂
Mv

that correspond to the hyperspecial vertices v ∈ B.
The isomorphism classes of the lattices in the neighbourhood of the lattice

Λ w.r.t. the prime p are exactly the isomorphism classes of lattices in gen◦(Λ)
(See [S] theorem 2.10 and the remarks following it).

This shows that statement (i) of the proposition holds. The second state-
ment of the proposition follows directly from statement (i).

4.4. Minimum norm vectors. Let NK/Q : K −→ Q be the norm
map of the field K into the field of rational numbers Q. For a hermi-
tian lattice Λ we denote the minimum norm of a non-zero vector in Λ by
min(Λ) := min({NK/Q(h0(x, x)) | x ∈ Λ, x 6= 0}). Let maxmin(gen◦(Λ)) :=
max({min(Λ′) | Λ′ ∈ gen◦(Λ)}) denote the norm of the longest minimum
norm vector of the lattices contained in the special genus of Λ. If K = Q,
then the norm map NK/Q is the identity map.

For any finite set X := {[ai] | ai ∈ Λ, i = 1, . . . , s} ⊂ [Λ′] we define
NΛ′(X) as follows: NΛ′(X) := {min({NK/Q(h0(x, x)) | x ∈ Λ′, [x] = [a]}) |
[a] ∈ X}.

4.5 Proposition. Let Λ′ ∈ gen◦(Λ) be an integer lattice and let x, y ∈ Λ′

be two non-zero vectors such that y 6= λ · x for λ ∈ L∗. Let us consider
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the inert prime ideals p such that h0(x, x), h0(y, y) ∈ OK − pOK. Then the
PU (2 ,Lp)-buildings bx and by, belonging to the stabilisers in PU (3 ,Lp) of
the points x and y,repectively, intersect transversally for all but finitely many
choices of the prime ideal p.

Proof. Let us fix vectors x, y ∈ Λ′ as in the statement of the proposition.
Let p ⊂ K be a prime ideal that is inert in the extension L ⊃ K and such
that h0(x, x), h0(y, y) ∈ OK − pOK. Then the stabilisers of the vectors
x, y ∈ Λ′ ⊂ V in PU (3 ,Lp) contain groups PU (2 ,Lp).

The OL-lattice Λ′ is the lattice Λ′ = Λ[ 1
sp

]
⋂
Mv = Λv for some hyper-

special vertex v ∈ B. Here Mv is the L◦p-module corresponding to the vertex

v. Therefore the intersection bx
⋂

by of the PU (2 ,Lp)-buildings bx and by
contains the vertex v ∈ B such that Λv = Λ′.

Since the hermitian form h0 is positive definite on V = L3, the inequality
h0(x, x)h0(y, y)− h0(x, y)h0(y, x) ≥ 0 holds. Here equality holds if and only
if x = λ · y for some λ ∈ L∗. Therefore h0(x, x)h0(y, y)− h0(x, y)h0(y, x) > 0
must hold.

Hence for at most finitely many prime ideals p the equality h0(x, x)h0(y, y)−
h0(x, y)h0(y, x) ≡ 0 mod p holds. Using lemma 2.7 (iii), it follows that for
all but finitely many choices of the inert prime ideal p the buildings bx and
by intersect transversally.

4.6 Lemma. Let Λ′ ∈ gen◦(Λ) be an integer lattice and let GΛ′(OL) be the
automorphism group of Λ′. Let AΛ′ be the set AΛ′ := {[a] | a ∈ Λ′, ∃(g ∈
GΛ′(OL) \ {1}) g(a) = a∧ g|a⊥ = 1}. Then the following holds for almost all
inert primes p:
if x ∈ Λ′ such that h(x, x) ≡ 0 mod p, then ∃(g ∈ GΛ′(OL) \ {1}) [g(x)] =
[x]⇒ ∃(a ∈ AΛ′) x⊥a.

Proof. Let us consider the set ZΛ′ := {[x] ∈ [Λ′] | ∃(g ∈ GΛ′(OL)) [g(x)] =
[x]∧@(a ∈ AΛ′) a⊥x}. One easily verifies that the set ZΛ′ is finite. Therefore
there exist only finitely many inert primes p ⊂ L such that there exists an
element x ∈ ZΛ′ with h0(x, x) ≡ 0 mod p. This proves the lemma.

4.7 Definition. Let vp denote the additive valuation on K or L w.r.t. the
prime ideal p, normalised such that vp(Kp − {0}) = Z. For a vector x ∈
Λ[ 1

sp
], x 6= 0 such that vp(h0(x, x)) ∈ 2Z, we denote the PU (2 ,Lp)-building

belonging to the stabiliser in PU (3 ,Lp) of x by bx. Let S ⊂ Λ[ 1
sp

] be a
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set of vectors x such that vp(h0(x, x)) ∈ 2Z. Then we define TS by TS :=
{bx | x ∈ S}.

4.8 Theorem. Let R ≥ maxmin(gen◦(Λ)) be an integer. For a prime ideal
p ⊂ K that is inert in the extension L ⊃ K, we denote by Sp ⊂ Λ[ 1

sp
] the

subset of non-zero vectors such that h0(x, x) ∈ OK and NK/Q(h0(x, x)) ≤ R.
Let us consider the inert prime ideals p such that h0(x, x) 6∈ pOK for all
x ∈ Sp.

i) Then for all but finitely many choices of the prime ideal p, the set
TSp is a GΛ(OL[ 1

sp
])-invariant almost complete transversal covering of

PU (2 ,Lp)-buildings in the PU (3 ,Lp)-building.

ii) If R ≥ max(maxmin(gen◦(Λ)),
⋃

Λ′∈gen◦(Λ) NΛ′(AΛ′)), then TSp is a

GΛ(OL[ 1
sp

])-adapted almost complete transversal covering .

Proof. Let us first consider pairs of vectors x, y ∈ Sp that are contained in
a fixed OL-lattice Λ′ ∈ gen◦(Λ). Modulo units of OL there are only finitely
many such vectors. By prop. 4.5 above, for all but finitely many choices of
the prime ideal p the stabilisers of vectors x and y with x 6= λ · y, λ ∈ L∗

give rise to PU (2 ,Lp)-buildings bx and by that intersect transversally.
The special genus gen◦(Λ) contains only finitely many isomorphism classes

of OL-lattices Λ′. For each isomorphism class of lattices, we only have to ex-
clude finitely many prime ideals p. Hence for all but finitely many inert prime
ideals p all the PU (2 ,Lp)-buildings contained in TSp intersect transversally.

Every hyperspecial vertex v ∈ B is such that the lattice Λv := Λ[ 1
sp

]
⋂
Mv

is contained in gen◦(Λ). Since R ≥ maxmin(gen◦(Λ), the lattice Λv contains
at least one non-zero vector x ∈ Sp. In particular, the vertex v is contained in

the PU (2 ,Lp)-building bx ∈ TSp . Therefore TSp is a GΛ(OL[ 1
sp

])-invariant

almost complete transversal covering of PU (2 ,Lp)-buildings. This proves
statement (i).

Let us now prove statement (ii). Let us fix a prime ideal p ⊂ L. Let v′ ∈ B
be a hyperspecial vertex and let Λv ∈ gen◦(Λ) be the L◦-lattice contained in
Mv. It follows from lemma 4.6 that the buildings b[a] for [a] ∈ AΛv contain
all the edges e 3 v with non-trivial stabiliser in GΛ(OL[ 1

sp
]) for almost all

primes. Now statement (ii) follows from statement (i).
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4.9 Example. Let K := Q and let L := Q(
√
d) be an imaginary quadratic

extension of K with d ∈ Z<0 square-free. We take Λ ∼= O3
L in L3 with the

standard hermitian form h0(x, y) = x0y0 +x1y1 +x2y2. Let p be a prime that
is inert in the extension L ⊃ K.

The unimodular hermitian lattices Λ are well-studied for small values of
d. For d = −1,−2,−3,−11 each lattice in the special genus gen◦(Λ) contains
minimum norm vectors of length 1. The number of non-isomorphic lattices
in gen◦(Λ) equals 1 if d = −1,−3 and ]gen◦(Λ) = 2 if d = −2,−11 (See [S]
table 1 and [H] table 1).

Let Sp := {x ∈ Λ | h0(x, x) = p2n, n ∈ Z≥0}. Then TSp is an GΛ(OL[1
p
])-

invariant almost complete transversal covering of PU (2 ,Lp)-buildings.
In general, the transversal covering is not complete. The only exception

occurs, when p = 2 and d = −3. Then the number of non-hyperspecial
vertices v that are neighbours of a fixed hyperspecial vertex v0 equals 23+1 =
9. Furthermore, the vertex v0 is contained in three PU (2 ,Lp)-buildings
b ∈ S2 and hence all the 9 vertices that are neighbours of v0 are contained in
a building b ∈ TS . Since the group GΛ(OL[1

2
]) acts transitively on vertices

of type 0, it follows that TS2 is complete.

4.10 Remark. The positive definite lattices with class numbers one and two
have been determined in [Ki] theorem 8.3.2. There are 37 distinct lattices
with class number one. Hence there are 37 distinct arithmetic groups (upto
commensurability) that act transitively on the hyperspecial vertices v ∈ B.

5 An equivariant étale covering of the p-adic

upper half plane

A detailed description of a certain étale covering of the p-adic upper half
plane Ω1 is given. Instead of considering the group SL(2 ,K ) acting on P1

K ,
we consider the isomorphic group SU (2 ,L) acting on P1

L preserving a unitary
form h2. Then Ω1 ⊂ P1

L is obtained by omitting the L-valued isotropic points
from the projective line.

The finite covering Σ of the p-adic upper half plane Ω1 := P1
L − {x ∈

P1(L) | h2(x, x) = 0} is constructed by glueing affinoids. We give a pure
affinoid covering of the rigid analytic variety Σ and define an action of the
group SU (2 ,L) on it. The covering Σ −→ Ω1 is SU (2 ,L)-equivariant finite
étale of degree q + 1.
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5.1. The building. Let us define the building b of SU (2 ,L) (and of
PU (2 ,L)) using equivalence classes of L◦-modules in L2 equiped with the
unitary form h2. All equivalence classes of L◦-modules in L2 give the building
of SL(2, L). The building of the group SU (2 ,L) is now given by the equiva-
lence classes of L◦-modules that have a basis consisting of isotropic vectors.
Let e1, e2 ∈ L2 be two isotropic vectors, such that the unitary form is given
by h2(x, y) = x1y2 + x2y1. Let M0 =< e1, e2 > and let M1 =< e1, π

−1e2 >.
Then the vertices of the building of SU (2 ,L) are the SU (2 ,L)-images of the
equivalence classes [M0] and [M1]. The edges of the building are give by the
images of {[M0], [M1]}.

Each L◦-module is equiped with a unitary form coming from the form h2.
On M0 the unitary form is non-degenerated, whereas on M1 it is degenerated.

Let M∨ be the dual module M∨ = {x ∈ L2 | ∀(y ∈ M) h2(x, y) ∈ L◦}.
Then M∨

0 = M0 and M∨
1 = πM1. The vertices of the building of SU (2 ,L)

are precisely the equivalence classes of L◦-modules [M ] such that [M∨] = [M ]
holds. Hence the SU (2 ,L)-building can be seen as the set of points fixed by
an involution acting on the building of the group SL(2, L).

On the building b an SU (2 ,L)-equivariant distance function db(−,−)
exists. We normalise it such that db(v,v′) = 1 for vertices v,v′ that form
an edge in the building.

5.2. The p-adic upper half plane. Let b denote the building of SU (2 ,L).
We briefly recall the standard pure affinoid covering of Ω1. To the standard
edge e0 ∈ b we associate the affinoid space XΩ1

e0
⊂ Ω1 given by:

1 ≥ |x1
x2
| ≥ |π|, |x1

x2
− c| = 1, |πx2

x1
− c| = 1, ∀c ∈ (L◦)∗ such that c+ c = 0.

To the vertices v0 and v1 of the edge e0 ∈ b we associate the open affinoid
subspaces XΩ1

v0
and XΩ1

v1
of XΩ1

e0
given by: |x1

x2
| = 1 and |πx2

x1
| = 1, respectively.

Let A(XΩ1
e ) and A(XΩ1

v ) denote the affinoid algebras corresponding to the
affinoid spaces XΩ1

e and XΩ1
v , respectively.

One has a SU (2 ,L)-equivariant map ψ : Ω1 −→ b. For x ∈ XΩ1
e0

one puts

ψ(x) := (1− v(x1
x2

)) ·v0 + v(x1
x2

) ·v1. Since |g∗xi
xi
| = 1, i = 1, 2, for all x ∈ XΩ1

e0

and all g ∈ Pe0 , this map does not depend on the choice of the coordinates
xi, i = 1, 2. Let x ∈ Ω1 be a point. There exists an element g ∈ SU (2 ,L)
such that g(x) ∈ XΩ1

e0
. In this situation we put ψ(x) = g−1(ψ(g(x))). Then

the function ψ is well-defined and SU (2 ,L)-equivariant.

5.3. Galois action. The analytical variety Ω1 is defined over the field L.
Therefore the Galois group Gal(L/K) acts on Ω1. To make the Galois action
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explicit, we embed Ω1 into a product of two projective lines. Let P1
L×P1

L be
the product of two projective lines with coordinates (x1, x2) and (z1, z2),
respectively. On it we take a quadratic form x1z2 + x2z1. The action of the
group SU (2 ,L) is such that it preserves the quadratic form. An element
g ∈ SU (2 ,L) that acts on the coordinates xi through a two by two matrix
M(g), acts on the coordinates zi through the matrix M(g), obtained by
replacing each coefficient mi,j of the matrix M(g) by the Galois conjugate
mi,j.

Let Ω1 be contained in the projective line P1
L defined by x1z2 + x2z1 = 0.

The interchange of the coordinates xi and zi, i = 1, 2 is a combination of
the action of the non-trivial element of the Galois group Gal(L/K) and the
diagonal element diag(1,−1). Therefore (x1, x2) and (z1,−z2) denote the
same point of Ω1. One can also use the coordinates zi, i = 1, 2 on Ω1, to
define a SU (2 ,L)-equivariant map ψ∨ : Ω1 → b. Of course, ψ∨((z1, z2)) =
ψ((x1, x2)), if (z1, z2) and (x1, x2) denote the same point in Ω1.

Let ge0 ∈ GU (2 ,L) be an element that permutes the two vertices of the
building that are contained in the edge e0. We can choose the element ge0 in
such a way that g∗e0

x1
x2

= −πx2
x1

holds. Without changing the action of ge0 on
the points in Ω1, we can redefine the action on coordinates as being given by
(x1, x2) → (πz2, z1) and (z1, z2) → (πx2, x1). The action of the element ge0
now incorporates the action on Ω1 of the non-trivial element of the Galois
group Gal(L/K).

An element g ∈ GU (2 ,L) such that v(det(g)) ≡ 1 mod 2Z acts as a
Galois element through permutation of the xi and zi coordinates on Ω1.
Indeed, one uses the fact that g = h · ge0 with v(det(h)) ≡ 0 mod 2Z.

5.4. The étale covering. We define a covering of degree q+1 of the affinoids
XΩ1

e , XΩ1
v ⊂ Ω1. Let fe0 ∈ A(XΩ1

e0
) be the following function: fe0(x) :=

x1
x2
·

1+(
x1
x2

)(q−1)

1+(−π·x2
x1

)(q−1) . The element ge0 ∈ GU (2 ,L) that permutes the two vertices

contained in the edge e0 acts on fe0 as g∗e0fe0 = −π/fe0 . Let he0 be a q+1-th
root of the function −fe0 and let h∨e0 be a q+ 1-th root of the function π/fe0 .
By AΣ we denote the affinoid algebra AΣ := A(XΩ1

e0
) < he0 , π/h

q+1
e0

>=
A(XΩ1

e0
) < he0 >. Let XΣ

e0
:= sp(AΣ) be the affinoid space belonging to the

affinoid algebra AΣ =: A(XΣ
e0

). The affinoid space XΣ
e0

is defined over the
field L.

Using the function h∨e0 instead of he0 , one can define the affinoid algebra
A∨Σ := A(XΩ1

e0
) < h∨e0 >. The affinoid spaces XΣ

e0
= sp(AΣ) and sp(A∨Σ)
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define the same covering of XΩ1
e0

, but the covering is defined differently over
the field L. They become identical over the field L with a q + 1-th root of π
added.

Let π
1
q+1 denote a q + 1-th root of π. We can extend the action of the

element ge0 ∈ GU (2 ,L) from A(XΩ1
e0
⊗L[π

1
q+1 ]) to A(XΣ

e0
⊗L[π

1
q+1 ]). Indeed,

the action of the element ge0 ∈ GU (2 ,L) that permutes the two vertices in

e0 can be defined by g∗e0he0 = h∨e0 := ζ · π
1
q+1/he0 . Here ζ ∈ L is a unit

root such that ζq+1 = −1. Note, that AΣ ⊗ L[π
1
q+1 ] = A(XΣ

e0
⊗ L[π

1
q+1 ]) =

A(XΩ1
e0
⊗ L[π

1
q+1 ]) < he0 >= A(XΩ1

e0
⊗ L[π

1
q+1 ]) < h∨e0 >= A∨Σ ⊗ L[π

1
q+1 ].

5.5 Lemma. The map ϕe0 : XΣ
e0
→ XΩ1

e0
induced by the inclusion A(XΩ1

e0
) ⊂

A(XΣ
e0

) has degree q + 1 and is étale.

Proof. The degree of the map XΣ
e0
→ XΩ1

e0
is clear from the definition. Let us

look at the points of ramification. For convenience we will work over the field

extension L[π
1
q+1 ]. The function fe0 has absolute value 1 outside the affinoid

subspaces XΩ1
v0
⊗ L[π

1
q+1 ] and XΩ1

v1
⊗ L[π

1
q+1 ] of XΩ1

e0
⊗ L[π

1
q+1 ]. Moreover,

the element ge0 ∈ GU (2 ,L), that permutes the vertices v0 and v1, also

permutes the ramification points of the map XΣ
e0
⊗L[π

1
q+1 ]→ XΩ1

e0
⊗L[π

1
q+1 ].

Hence it is sufficient to look at the ramification points of XΣ
v0
⊗ L[π

1
q+1 ] →

XΩ1
v0
⊗ L[π

1
q+1 ]. Clearly, fe0(x) = 0 can only occur for x ∈ XΩ1

v0
⊗ L[π

1
q+1 ],

if 1 + (x1
x2

)q−1 = 0. Solving this equation over the residue field, gives the
isotropic points a ∈ `∗. Since the `-valued isotropic points do not occur in

the reduction of XΩ1
v0
⊗L[π

1
q+1 ], the map is étale. This proves the lemma.

5.6 Lemma. Let Pe0 ⊂ SU (2 ,L) be the stabiliser of the edge e0 ∈ b and let
g ∈ Pe0. Then the following holds:

i) There exists a function C0,g(x) ∈ A(XΩ1
e0

) such that g∗fe0(x) = ( x2
g∗x2

)q+1 ·
C0,g(x) · fe0(x). Moreover, C0,g(x) ≡ 1 mod π if 1 ≥ |x1

x2
| > |π|.

ii) There exists a function C1,g(x) ∈ A(XΩ1
e0

) such that g∗fe0(x) = (g
∗x1
x1

)q+1 ·
C1,g(x) · fe0(x). Moreover, C1,g(x) ≡ 1 mod π if 1 > |x1

x2
| ≥ |π|.

Proof. We can write fe0(x) = 1

xq+1
2

· xq1x2+x1x
q
2

1+(−π·x2
x1

)(q−1) . Furthermore, C0,g(x) =

g∗xq+1
2 g∗fe0 (x)

xq+1
2 fe0 (x)

satisfies the first part of statement (i) of the lemma. It remains

to show that C0,g(x) ≡ 1 mod π for 1 ≥ x1
x2
> |π|.
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Since |πx2
x1
| < 1, C0,g(x) ≡ g∗x1g∗x

q
2+g∗xq1g

∗x2
xq1x2+x1x

q
2

mod π holds. Any element

g ∈ Pe0 ⊂ SU (2 ,L) preserves the hermitian form h2(x, y) = x1y2 + x2y1,
therefore g∗x1g

∗xq2 + g∗xq1g
∗x2 ≡ xq1x2 + x1x

q
2 mod π for |x1

x2
| = 1. Moreover,

g∗x1
x1
≡ g∗x2

x2
≡ 1 mod π if 1 > |x1

x2
| > |π|. Hence C0,g(x) ≡ g∗x1g∗x

q
2+g∗xq1g

∗x2
xq1x2+x1x

q
2

≡
1 mod π for 1 ≥ |x1

x2
| > |π|. This proves statement (i) of the lemma.

The proof of statement (ii) of the lemma is similar. One uses the equality

fe0(x) = −xq+1
1

π
·

1+(
x1
x2

)(q−1)

xq1(−πx2)+x1(−πx2)q
and the fact that the reduction of the

hermitian form g∗e0h2 at the vertex v′ equals xq1(−πx2) + x1(−πx2)q modulo
π.

5.7. The group action. Using the lemma above one can define the action
of Pe0 on A(XΣ

e0
). There exist functions c0,g(x) and c1,g(x) well-defined on

the open admissable subsets 1 ≥ |x1
x2
| > |π| and 1 > |x1

x2
| ≥ |π| of XΩ1

e0
,

respectively, such that ci,g(x)q+1 = Ci,g(x) and ci,g(x) ≡ 1 mod π for i = 1, 2.
Then the action of g ∈ Pe0 on he0 is defined as follows:

g∗he0(x) = x2
g∗x2
· c0,g(x) · he0(x) if 1 ≥ |x1

x2
| > |π|.

g∗he0(x) = g∗x1
x1
· c1,g(x) · he0(x) if 1 > |x1

x2
| ≥ |π|.

Since ( x2
g∗x2

)q+1 · C0,g(x) = (g
∗x1
x1

)q+1 · C1,g(x) and g∗x1
x1
≡ g∗x2

x2
≡ 1 mod π

for 1 > |x1
x2
| > |π|, these actions coincide when they are both defined. Since

g∗1(g∗2fe0(x)) = (g1g2)∗fe0(x), it follows from the definition that g∗1(g∗2he0(x)) =
(g1g2)∗he0(x).

Moreover, the first formula also defines the action of g ∈ Pv0 on A(XΣ
v0

),
since statement (i) of the lemma above still holds in this case. Similarly, the
second formula defines the action of g ∈ Pv1 on A(XΣ

v1
).

5.8 Theorem. (a) The affinoid spaces XΣ
e , X

Σ
v for vertices v ∈ b and

edges e ∈ b glue together and form a pure affinoid covering of a sepa-
rated analytical space Σ.

(b) The map ϕ : Σ → Ω1 obtained by glueing the maps ϕe is SU (2 ,L)-
equivariant and has degree q + 1.

(c) The map ϕ : Σ→ Ω1 is étale.

(d) Then the reduction of Σ is as follows:
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1. For each vertex of the building b curves isomorphic to the plane
hermitian projective curve given by xq+1

0 + x1x
q
2 + xq1x2 = 0 in P2

` .
This curve is non-singular.

2. The components belonging to two vertices v1 and v2 of the building
b intersect in a `-valued point if and only if the two vertices form
an edge e of the building.

(e) The reduction of Σ is stable over L(π
1
q+1 ).

Proof. That the affinoids XΣ
e for edges e ∈ b glue together and form some

rigid analytic space Σ is clear. The only point of concern is the separatedness
of the resulting analytical space Σ. However, from the fact that we have maps
ϕe : XΣ

e → XΩ1
e that coincide on XΣ

v for all edges e 3 v the separatedness
follows. This proves statement (a).

Statements (b) and (c) of the theorem are clear from the construction of
the maps ϕΣ

e : XΣ
e → XΩ1

e and lemma 5.5 above.
So let us now prove statement (d) of the theorem. First we consider

the reduction of the affinoid XΣ
e . We only have to consider the component

corresponding to the vertex v. The other component is isomorphic to it,
since the element ge ∈ GU (2 ,L) defined above permutes the vertices in e

and preserves A(XΣ
e ⊗L[π

1
q+1 ]). The generators of the affine `-algebra giving

the component for the vertex v are he(x) and x1
x2

and satisfy the equation

he(x)
q+1

= −x1
x2
− x1

x2

q
. Furthermore, x1

x2
6= a for isotropic a ∈ ` − {0}, since

the `-valued isotropic points are omitted.
Let us now compare this affine algebra with an open affine subset of the

curve C ⊂ P2
` given by the equation xq+1

0 + x1x
q
2 + xq1x2 = 0. Taking x2 6= 0,

we obtain the equation x0
x2

q+1 + x1
x2

+ x1
x2

q = 0. Removing the isotropic points
x0
x2
6= a for a ∈ ` − {0} results in an affine subset A ⊂ C isomorphic to the

component of the reduction of the affinoid space XΣ
e belonging to the vertex

v 3 e. The group SU(2, `) acts on P2
` fixing the point x0. This action of

SU(2, `) preserves the curve C ⊂ P2
` . The affine sets g(A) for g ∈ SU(2, `)

cover the curve C.
Let Pv ⊂ SU (2 ,L) denote the stabilizer of the vertex v ∈ b. Then

the component of the reduction of XΣ
g(e) ⊗ L[π

1
q+1 ] belonging to the vertex

v corresponds to the affine space g(A), where g ∈ SU(2, `) denotes the
reduction of g ∈ Pv. Hence the component of the reduction of Σ belonging
to the vertex v is indeed a curve C as stated in the theorem.
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A calculation of the partial derivatives shows that the curve C is non-
singular.

5.9. Embedding the affinoid XΣ
e into a projective plane. Let us embed

the affinoid space XΣ
e into P2

L. Let xi, i = 0, 1, 2 be the coordinates of P2
L

and let x0 = 0 define a projective line P1
L inside the P2

L. We take the usual
unitary form x1x2 + x2x1 on the projective line P1

L. It is preserved by a
group SU (2 ,L) acting on the projective line. Then Ω1 ⊂ P1

L is obtained by
removing the L-valued isotropic points. The affinoidXΩ1

e0
⊂ Ω1 consists of the

points (0, x1, x2) such that 1 ≥ |x1
x2
| ≥ |π| with the non-zero `-valued isotropic

points removed from the reduction of the affinoid space. An embedding of the
affinoid space XΣ

e can now be obtained by taking the points x ∈ P2
L such that

(0, x1, x2) ∈ XΩ1
e0

and, moreover, (x0
x2

)q+1 = −fe0((x1, x2)) = −x1
x2
·

1+(
x1
x2

)q−1

1+(−π·x2
x1

)q−1 .

Therefore x0
x2

represents the function he0((x1, x2)).

Let us use a second projective plane P2
L with coordinates zi, i = 1, 2, 3

to obtain the alternative embedding XΣ
e into P2

L based on the function h∨e0 .
We relate the two projective planes using the relation x1z2 + x2z1 = 0. This
identifies the two projective lines P1

L given by x0 = 0 and by z0 = 0, respec-
tively. The action of the group SU (2 ,L) on the P1

L using the coordinates
x1, x2 and z1, z2 differs by the action of a generator of the Galois group
Gal(L/K). Now we can describe the embedding of the affinoid space XΣ

e

using the coordinates zi, i = 0, 1, 2. A straightforward approach would be
to use equation ( z0

z2
)q+1 = π/fe0((z1, z2)) to define the embedding of the affi-

noid space XΣ
e , but then the action of the element ge0 would not be defined

over L. To avoid this, we use the equation π · ( z0
z2

)q+1 = π/fe0((z1, z2)) in-

stead. Then XΣ
e consists of the points z ∈ P2

L such that (0, z1, z2) ∈ XΩ1
e0

and
( z0
z2

)q+1 = 1/fe0((z1, z2)).
We can now define an action of the element ge0 ∈ GU (2 ,L) that per-

mutes the two projective planes as follows: ge0(x) = z = (x1x2
x0
,−x2, πx1)

and ge0(z) = x = ( z1z2
z0
,−z2, πz1). This is well-defined, once the coordinate

lines xi = 0 and zi = 0, i = 0, 1, 2 are removed from the two projective
planes. Then g2

e0
acts as g2

e0
= −π · id. on both projective planes (with the

coordinate lines removed). For a point x ∈ XΣ
e , the image z = ge0(x) satis-

fies: ( z0
z2

)q+1 = (x1x2
x0
/(π ·x1))q+1 = ( x2

π·x0 )q+1 = (
−fe0 (x)

π
)q+1 = ( 1

fe0 (ge0 (x))
)q+1 =

( 1
fe0 ((z1,z2))

)q+1. Hence ge0(x) is contained in the other embedding of the affi-

noid XΣ
e . Therefore both embeddings of the affinoid space XΣ

e are permuted
by the element ge0 ∈ GU (2 ,L).
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Since the affinoid XΣ
e can be embedded into the projective plane and the

components of the reduction of Σ consist of plane projective curves, one can
embed the complete affinoid covering of Σ in the plane. However, in general
such an embedding does not have a group action on it that extends to the
entire projective plane.

5.10. Open admissable subspaces. For later use some open admissable
subspaces of Σ are defined. For a vertex v ∈ b we define the subspace
Σv := {x ∈ Σ | db(ψ(ϕ(x)),v) < 1}. For an edge e ∈ b we take Σe :=⋂

v∈e Σv = {x ∈ Σ | ψ(ϕ(x)) ∈ e, ψ(ϕ(x)) 6= v for vertices v ∈ e}.
The group action on the affinoid XΣ

e is defined by giving an explicit
group action on XΣ

e

⋂
Σv, where v ∈ e is the vertex of type τ(v) = 0 and

on XΣ
e

⋂
Σv′ where v′ ∈ e is the vertex of type τ(v′) = 1 that coincides on

the intersection Σe = XΣ
e

⋂
Σv

⋂
Σv′ . In the next sections we will embed⋃

v∈b,τ(v)=0 Σv and
⋃

v∈b,τ(v)=1 Σv into projective planes such that a discrete

subgroup of the group PU (2 ,L) acts linearly on it.

5.11 Proposition. The subsets Σv and Σe with v, e ∈ b are open and ad-
missable subsets of Σ. The covering {Σv,Σe | v, e ∈ b} is an open admissable
covering of Σ.

Proof. We will only prove that Σv is open and admissable for a vertex v of
type τ(v) = 0. The other cases are similar.

The space Σv equals the finite union Σv =
⋃

e3v Σv ∩ XΣ
e =

⋃
e3v{x ∈

XΣ
e | db(ψ(ϕ(x)),v) < 1}. Without loss of generality, we may assume that v

is the standard vertex v0. Let e0 3 v0 be the standard edge. Then x ∈ XΣ
e0

satisfies 1 ≥ |x1
x2
| ≥ |π|. The subset Σv0 ∩ XΣ

e0
⊂ XΣ

e0
consists of the points

x ∈ XΣ
e0

such that |πx2
x1
| < 1 holds. Therefore by [B-G-R] §9.1.4 prop. 5.

the subset Σv0 ∩ XΣ
e0
⊂ XΣ

e0
is open and admissable. Moreover, the finite

union Σv0 =
⋃

e3v0
Σv0 ∩ Σe of open admissable subsets is again open and

admissable.
The intersection Σv ∩ Σv′ = Σe if v 6= v′ ∈ e. Since the subset Σe ⊂ Σv

with v ∈ e is open and admissable and a vertex v is contained in only finitely
many edges e, the covering {Σv,Σe | v, e ∈ b} is an admissable covering of
Σ.

5.12 Comparison. Relation with Drinfel’ds system of étale coverings. In
[Dr] Drinfel’d has defined a system of étale coverings of Ω1,K := P1

K−P1(K).

The first level Σ
(q−1)
K of this system of coverings consists of q − 1 connected
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components that are all isomorphic (See [Te] and [P] theorem 8.4). The
reduction of a connected component of this first level consists of hermitian
curves. Over the ring Znrp the following equation for Σ

(q−1)
K around a vertex

in affine coordinates is derived : Y p2−1
0 = p(z0 − zp0)p−1 (See [Te] cor. 6).

The constant factor p matters for a definition over K◦ and is irrelevant
for our construction. In a semistable model the constant factor is absorbed
in the coordinates. In [P] theorem 8.4 such a semistable model of Σ

(q−1)
K

over the field L((−π)
1

q2−1 ), π = p is described. We will now describe how a
connected component of this semistable model is related to our space Σ.

Let us first construct a curve ΣK over the field K, such that ΣK⊗L ∼= Σ.
To define an affinoid XΣK

e0
for the edge e0 ∈ b, one considers f̃e0(x) :=

x1
x2
·

1−(
x1
x2

)(q−1)

1−(−π·x2
x1

)(q−1) . Let h̃e0(x)q+1 = −f̃e0(x). Here x1
x2
∈ Ω1,K , 1 ≥ |x1

x2
| ≥ |π|.

Then the affinoids XΣK
e for the edges e ∈ b glue together into a rigid analytic

variety ΣK that is an étale covering of Ω1,K of degree q + 1. The methods
used above to define the group action on Σ and describe the reduction of Σ
are also applicable in this case.

One can construct the isomorphism ΣK⊗L ∼= Σ explicitly. Let ϕξ : Ω1,K⊗
L → Ω1 be the isomorphism given by ϕξ((x1, x2)) = (x1, ξx2), with ξ ∈ L◦,
ξq−1 = −1. Then ϕξ∗fe0 = ξf̃e0 . Let β ∈ L◦ be such that βq+1 = ξ. Then we

define ϕξ∗he0 = βh̃e0 and obtain an isomorphism between the affinoids XΣ
e0

and XΣK
e0
⊗L that is defined over the unramified extension L′ ⊃ K of degree

four. This isomorphism only depends on the choice of ξ. It does not depend
on the value of β choosen.

The reduction at a vertex is a curve H−1 defined by the equation xq+1
0 +

x1x
q
2 − x2x

q
1 = 0. In this case (π

1
q+1

βh̃e0
)q+1 = π

−ξf̃e0 (x)
. This gives rise to the

same hermitian curve H−1 as reduction at the other type of vertices.
The above gives an isomorphism over some extension L′ ⊃ L. The next

step is to enlarge the field and take different generators of the affinoid algebras
and use these to construct an isomorphism.

Let ζc ∈ L◦ be a unit root such that its reduction equals c ∈ `. Let L′′ ⊃ L
be an unramified extension that contains an element βc such that βq+1

c = ζc.

Then we define (eω(x))q+1 = − 1
ζc
ξf̃e0(x) and e′ω(x) = ξ · π

1
q+1

eω(x)
. In particular,

eω(x) = βcβh̃e0 , (e′ω(x))q+1 = ξq+1 π

ξ 1
ζc
·f̃e0 (x)

= −ξ2 π

ξ 1
ζc
·f̃e0 (x)

= −ζcξ π

f̃e0 (x)
and

e′ω(x) = β−1
c βq π

1
q+1

h̃e0
. (Need to take βq instead of β in e′ω(x)???)
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The isomorphism ϕξ∗ is now given by:

(x1
x2
, βc · he0(x), ξβ−1

c · π
1
q+1

he0(x)
) −→ (ξ x1

x2
, eω(x), e′ω(x)). On both sides of the

arrows there are generators of the affinoid algebra over the field L′′(π
1
q+1 ).

These generators can be used to define the analytic variety over the field L.
By construction the group SL(2, K) acts on these varieties and each va-

riety is after a base change isomorphic to Σ⊗ L′′(π
1
q+1 ). It seems the group

GL(2, K) in general does not act on these varieties. If K = Qp, then there
seem to be only p − 1 varieties on which the group GL(2,Qp) acts (See [P]
lemma 7.4 and proposition 7.5). These p − 1 varieties correspond to the

connected components of Σ
(q−1)
K .

6 Equivariant embeddings into the projective

plane

Let Γb ⊂ P(U (1 ,L)× U (2 ,L)) be a discrete co-compact subgroup. Let P
and P∨ be two projective planes P2

L on which the group P(U (1 ,L)× U (2 ,L))
acts linearly such that it fixes a single point. The action of P(U (1 ,L)× U (2 ,L))
on P and P∨ differs by conjugation with the non-trivial element of the Galois
group Gal(L/K).

We embed the open admissable subspaces Σv ⊂ Σ, v ∈ b with τ(v) = 0
into P and the subspaces Σv with τ(v) = 1 into P∨. These embeddings are
defined using infinite Γb-invariant sums that converge on Ω1. The embed-
dings therefore explicitly use the fact that Σ is a covering of Ω1. Moreover,
the embeddings are Γb-equivariant. The spaces Σv, v ∈ b are glued along
the spaces Σe for edges e ∈ b to obtain the analytic space Σ.

6.1 An equivariant embedding

6.1. Infinite sums on Ω1. Let Γb ⊂ P(U (1 ,L)× U (2 ,L)) be a discrete co-
compact subgroup. Let the group Γb act on Ω1 through the projection onto
the group U(2, L). We define the Γb-invariant infinite sums converging on
Ω1 that can be used to obtain a Γb-equivariant embedding of

⋃
v∈b,τ(v)=0 Σv

(
⋃

v∈b,τ(v)=1 Σv) into P2
L.

Let v0 ∈ b be the vertex corresponding to the equivalence class [Mv0 ],
Mv0 =< e0, e1, e2 > and let v1 ∈ b be the vertex corresponding to the
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equivalence class [Mv1 ], Mv1 =< e0, e1, π
−1e2 >. We associate to the vertices

v0,v1 ∈ b polynomials Av0(x) and Av1(z) of degree q+1. For points x, z ∈ Ω1

one defines Av0(x) := x1x
q
2 + x2x

q
1 and Av1(z) := z1(πz2)q + (πz2)zq1. The

action of the group U(2, L) on the coordinates xi and zi, i = 1, 2, differs by
conjugation with the non-trivial element of the Galois group Gal(L/K).

We associate to each vertex v ∈ b a homogeneous polynomial av,b(x) or
av,b(z) of degree q + 1 such that the following four conditions hold:

i) If τ(v) = 0, then av,b(x) ≡ g∗Av0(x) mod π for all g ∈ U(2, L) such
that g(v0) = v.

ii) If τ(v) = 1, then av,b(z) ≡ g∗Av1(z) mod π for all g ∈ U(2, L) such
that g(v1) = v.

iii) If τ(v) = 0, aγ(v),b(x) = γ∗av,b(x) for all γ ∈ Γb.

iv) If τ(v) = 1, aγ(v),b(z) = γ∗av,b(z) for all γ ∈ Γb.

Let Fb(x) := (
∑

v∈b,τ(v)=0 av,b(x)−1)−1 and let F∨b (z) := (
∑

v∈b,τ(v)=1 av,b(z)−1)−1.
Below we show that these sums are well-defined for points x, z ∈ Ω1.

6.2 Lemma. Let x ∈ Ω1 be a point such that ψ(x) ∈ A ⊂ b. Then
v(g

∗x1g∗x2
x1x2

(x)) = −db(gA, ψ(x)).

Proof. If ψ(x) ∈ gA, then db(gA, ψ(x)) = 0 and we may assume that g ∈
Pψ(x). Then |g∗xi

xi
| = 1 for i = 1, 2 and the lemma holds.

So let us now consider the case where ψ(x) 6∈ gA. Let v ∈ gA be the
vertex closest to ψ(x). Let e ∈ A ⊂ b be the edge containing ψ(x). Without
loss of generality, we may assume that e is our standard edge. Since ∀(h ∈
Pe) |h

∗xi
xi
| = 1, i = 1, 2, the absolute value of the coordinates x1, x2 does not

depend on the choice of the apartment A 3 ψ(x). Therefore we may assume
that the vertex v is contained in A.

Let us first consider the case where the vertex v is of type τ(v) = 0. Let
[Mv] be a the equivalence class of L◦-modules corresponding to the vertex v.
We may assume that Mv =< e1, e2 > and after replacing the the coordinates
xi by suitable translates by an element of the maximal split torus belonging to
the apartment A, we may assume that the coordinates xi, i = 1, 2, correspond
to the basis ei of P1

L.
We normalise the coordinates of the point x such that |xi| ≤ 1 and one of

the coordinates has absolute value equal to 1. Using this normalisation the
equality v(x1x2) = db(v, ψ(x)) holds.
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Since the apartment g(A) is such that the vertex v ∈ g(A) is closest to
the point ψ(x) ∈ A, |g∗xi| = 1 holds for i = 1, 2. Therefore −v(g

∗x1g∗x2
x1x2

) =
v(x1x2) = db(v, ψ(x)) for elements g ∈ Pv such that g(A)

⋂
A = {v}.

This proves the lemma if the vertex v is of type τ(v) = 0. The proof in
case the vertex v is of type τ(v) = 1 is similar.

6.3 Lemma. Let x ∈ Xe ⊂ Ω1 be a point and let v ∈ b be a vertex. Let
A ⊂ b be an apartment containing ψ(x) and let x1, x2 be the associated
coordinates. Then:

i) If τ(v) = 0 and db(v, ψ(x)) ≤ 1, then v(
av,b(x)

(x1x2)(q+1)/2 ) = − q−1
2
·db(v, ψ(x)).

ii) If τ(v) = 0 and db(v, ψ(x)) > 1, then − q−1
2
·db(v, ψ(x)) ≥ v(

av,b(x)

(x1x2)(q+1)/2 ) ≥
− q+1

2
· db(v, ψ(x)) + 1.

iii) If τ(v) = 1 and db(v, ψ∨(z)) ≤ 1, then v(
av,b(z)

(πz1z2)(q+1)/2 ) = − q−1
2
·

db(v, ψ∨(z)).

iv) If τ(v) = 1 and db(v, ψ∨(z)) > 1, then − q−1
2
·db(v, ψ∨(z)) ≥ v(

av,b(z)

(πz1z2)(q+1)/2 ) ≥
− q+1

2
· db(v, ψ∨(z)) + 1.

Proof. Let e ∈ A ⊂ b be the edge containing ψ(x). Without loss of general-
ity, we may assume that e is our standard edge. Since ∀(g ∈ Pe) |g

∗xi
xi
| = 1,

i = 1, 2, the absolute value of the coordinates x1, x2 does not depend on the
choice of the apartment A 3 ψ(x). Therefore we may assume that the vertex
v is contained in A.

Let us first consider the case where the vertex v is of type τ(v) = 0.
Since the characteristic of the residue field ` of L does not equal 2, the
homogeneous polynomial av,b(x) of degree q + 1 is such that av,b(x) ≡
(g∗0x1g

∗
0x2) · (g∗1x1g

∗
1x2) · · · (g∗(q−1)/2x1g

∗
(q−1)/2x2) mod π for suitably choosen

elements gi ∈ Pv, i = 0, . . . , (q − 1)/2. One can choose the elements gi such
that gi(A)

⋂
A = {v} for i = 1, . . . , (q − 1)/2 and g0(A)

⋂
A contains the

two edges e 3 v that are contained in A.
By lemma 6.2 above −v(g

∗x1g∗x2
x1x2

) = db(v, ψ(x)) for g ∈ Pv such that

g(A)
⋂
A = {v}. If ψ(x) ∈ g0(A), then −v(

g∗0x1g
∗
0x2

x1x2
) = 0. Therefore

v(
av,b(x)

(x1x2)(q+1)/2 ) = − q−1
2
· db(v, ψ(x)), if ψ(x) ∈ g0(A). In particular, this

holds if db(v, ψ(x)) ≤ 1. This proves statement (i) of the lemma.
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Statement (ii) of the lemma follows from the fact that 0 ≤ db(g0A,ψ(x)) ≤
db(v, ψ(x))− 1, since the apartment g0A contains the two edges e 3 v that
are contained in A 3 ψ(x).

The proof of the statements (iii) and (iv) for the case τ(v) = 1 is similar.

6.4 Lemma. The following statements hold:

i) The sums
∑

v∈b,τ(v)=0 av,b(x)−1 and
∑

v∈b,τ(v)=1 av,b(z)−1 converge on
Ω1.

ii) The sum
∑

v∈b,τ(v)=0 av,b(x)−1 has only zeroes at points x ∈ Ω1 such

that ψ(x) is a vertex v of type τ(v) = 1.

iii) The sum
∑

v∈b,τ(v)=1 av,b(z)−1 has only zeroes at points z ∈ Ω1 such

that ψ∨(z) is a vertex v of type τ(v) = 0.

Proof. From lemma 6.3 it follows that av,b(x)−1 −→ 0, if db(v, ψ(x)) −→∞.
Since there are only finitely many vertices v ∈ b, such that db(v, ψ(x)) ≤ R
for any finite R ∈ R, it follows that the first sum converges on all of Ω1.
The argument for the second sum is similar. This proves statement (i) of the
lemma.

A zero of the sums can only occur, if more than one polynomial av,b(x)
obtains the minimal absolute value of such polynomials on x. Hence more
than one vertex v should obtain the minimum distance to the point ψ(x) ∈ b.
This can only occur if ψ(x) is a vertex such that the type τ(v) is distinct
from the type of the vertices used to define the sums. This proves the second
statement of the lemma.

The third statement of the lemma is proved analogously. This concludes
the proof of the lemma.

6.5. The spaces Y s
b and Y s

b
∨. Let us take a projective space P5

L with
homogeneous coordinates (x0, x1, x2, z0, z1, z2) with a quadratic form x0z0 +
x1z2 + x2z1 on it. In P5

L one has two projective planes P2
L, one defined by

z0 = z1 = z2 = 0 and one defined by x0 = x1 = x2 = 0. Then (x0, x1, x2) and
(z0, z1, z2) are the homogeneous coordinates on these two distinct projective
planes P2

L. Let us denote these projective planes by P and P∨,respectively.
Let the unitary group U(1, L)×U(2, L) act linearly on P5

L preserving the
quadratic form, the subspaces P and P∨ and the points x0 and z0.
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On P and P∨ the group U(1, L) × U(2, L) acts linearly fixing the point
x0 and z0, respectively. The group U(2, L) acts linearly on the projective
line P1

L given by x0 = 0 and z0 = 0 in P and P∨, respectively. The action of
U(1, L) × U(2, L) on the projective planes P and P∨ differs by conjugation
with the non-trivial element of the Galois group Gal(L/K).

Let us define hermitian forms h and h∨ preserved by U(1, L) × U(2, L)
on P and P∨, respectively. Let h(x, y) = x1y2 + x2y1 + x0y0 for x, y ∈ P and
let h∨(z, u) = z1u2 + z2u1 + z0u0 for z, u ∈ P∨, where the points y and u are
L-valued.

Let Y s
b ⊂ P denote the space Y s

b := {x ∈ P | (x1, x2) ∈ Ω1} and let
Y s
b
∨ := {z ∈ P∨ | (z1, z2) ∈ Ω1}. The spaces Y s

b and Y s
b
∨ can be described

using the hermitan forms h and h∨, respectively. Indeed, Y s
b = {x ∈ P ∼=

P2
L | ∀(y = (0, y1, y2) ∈ P2(L) such that h(y, y) = 0) h(x, y) 6= 0}. A similar

description holds for Y s
b
∨.

The maps ψ, ψ∨ : Ω1 −→ b can be extended to Y s
b and Y s

b
∨, respectively.

We will denote these maps by ψb and ψ∨b . Then ψb : Y s
b −→ b denotes the

map defined by ψb(x) := ψ((x1, x2)) and ψ∨b : Y s
b
∨ −→ b denotes the map

defined by ψ∨b(z) := ψ∨((z1, z2)).

6.6. Analytical subspaces of Y s
b and Y s

b
∨ for vertices and edges in

b. For each vertex v ∈ b we define an analytical space Σ]
v. The definition of

the space depends on the type τ(v) of the vertex. If τ(v) = 0, then we define
Σ]

v by Σ]
v := {x ∈ Y s

b | db(ψb(x),v) < 1, xq+1
0 + Fb((x1, x2)) = 0}. For a

vertex v of type τ(v) = 1, we define Σ]
v by Σ]

v := {z ∈ Y s
b
∨ | db(ψ∨b(z),v) <

1, −π · zq+1
0 + F∨b ((z1, z2)) = 0}.

For an edge e ∈ b we define two spaces Σ]
e and Σ]∨

e . Let Σ]
e := {x ∈

Σ]
v | ψb(x) ∈ e, ψb(x) 6= v} ⊂ Y s

b , where v ∈ e is the vertex of type
τ(v) = 0. Let Σ]∨

e := {z ∈ Σ]
v′ | ψ∨b(z) ∈ e, ψ∨b(z) 6= v′} ⊂ Y s

b
∨, where

v′ ∈ e is the vertex of type τ(v′) = 1.

6.7 Proposition. Let v ∈ b be a vertex. Then Σ]
v
∼= Σv.

Proof. It is sufficient to prove the proposition for the vertices v0 and v1 of
type τ(vi) = i, i = 0, 1 that are contained in the standard edge e0 ∈ b. We
have to show that Σ]

v0
∼= Σv0 and that Σ]

v1
∼= Σv1 . For this it is sufficient

to show that {x ∈ Σ]
v0
| ψb(x) ∈ e0} ∼= {x ∈ Σv0 | ψ(ϕ(x)) ∈ e0} and that

{z ∈ Σ]
v1
| ψ∨b(z) ∈ e0} ∼= {z ∈ Σv1 | ψ∨(ϕ(z)) ∈ e0}. Therefore we have

to show that {x ∈ Σ]
v0
| ψb(x) ∈ e0} ∼= XΣ

e0

⋂
Σv0 and {z ∈ Σ]

v1
| ψ∨b(z) ∈

e0} ∼= XΣ
e0

⋂
Σv1 .
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To prove statement for vertices v of type τ(v) = 0, we embed XΣ
e0

into
Y s
b ⊂ P as the set of points such that ψ((x1, x2)) ∈ e0 and (x0

x2
)q+1 =

−fe0((x1, x2)). We consider XΣ
e0

⋂
Σv0 therefore as being the subset {x ∈

XΣ
e0
| db(ψ((x1, x2)),v0) < 1} = {x ∈ XΣ

e0
| |πx2

x1
| < 1} of Y s

b .

Since |πx2
x1
| < 1, one has that fe0((x1, x2)) = x1

x2
·

1+(
x1
x2

)(q−1)

1+(
−π·x2
x1

)(q−1)
≡ x1

x2
+ (x1

x2
)q

mod π. Therefore xq+1
0 = −xq+1

2 fe0((x1, x2)) ≡ −xq1x2 − x1x
q
2 mod π holds.

Since xq1x2 + x1x
q
2 ≡ Fb((x1, x2)) mod π, it follows that XΣ

e0

⋂
Σv0
∼= {x ∈

Y s
b | ψb(x) ∈ e0, db(ψb(x),v0) < 1, xq+1

0 + Fb((x1, x2)) = 0} = {x ∈ Σ]
v0
|

ψb(x) ∈ e0}. This proves the proposition for the vertices v of type τ(v) = 0.
The statement of the proposition is proved similarly for the vertex v1

of type τ(v1) = 1. One embeds XΣ
e0

into Y s
b
∨ ⊂ P∨ as the set of points

such that ψ∨((z1, z2)) ∈ e0 and ( z0
z1

)q+1 = −1/fe0((z1, z2)). Since | z1
z2
| < 1 on

XΣ
e0

⋂
Σ]

v1
, it follows that −π · zq+1

0 ≡ −(zq1πz2 + z1(πz2)q) ≡ −F∨b ((z1, z2))
mod π holds. From this the proposition follows.

6.8 Proposition. Let g ∈ SU (2 ,L) and let e = g(e0) ∈ b be an edge. Then
the spaces Σ]

e and Σ]∨
e are isomorphic.

The isomorphism Σ]
e
∼= Σ]∨

e is given by taking z1 = x1, z2 = −x2

and as z0 the unique solution of zq+1
0 =

Fb((x1,x2))F∨b ((z1,z2))

−π·xq+1
0

that satisfies

z0 ≡ g∗x1g∗x2
x0

mod π. The isomorphism does not depend on the choice of
the element g ∈ SU (2 ,L) such that g(e0) = e.

Proof. The action of the group SU (2 ,L) on P and P∨ preserves the quadratic
form x1z2 +x2z1. Therefore identifying z1 = x1 and z2 = −x2 on Σ]

e and Σ]∨
e

implies that g∗z1 = g∗x1 and g∗z2 = −g∗x2 holds. Then 1 < |g∗x1
g∗x2
| = |g∗z1

g∗z2
| <

|π|.
Once one has identified Σ]

e with Σ]∨
e , the equation zq+1

0 =
Fb(x)F∨b (z)

−π·xq+1
0

holds. We use this equation to derive a relation between the coordinates
x0 and z0 that can be used to obtain the isomorphism between the two
spaces. Since 1 < |g∗x1

g∗x2
| < |π|, we have Fb((x1, x2))F∨b ((z1, z2))/(−π) ≡

av,b((x1, x2))av′((z1, z2))/(−π) ≡
(g∗x1g

∗xq2+g∗x2g
∗xq1)(g∗x1(−πg∗x2)q+(−πg∗x2)g∗xq1)/(−π) ≡ (g∗x1g

∗x2)q+1 mod π.
Therefore we can identify the coordinate z0 with the unique solution of the

equation above such that z0 ≡ g∗x1g∗x2
x0

mod π as stated in the proposition.

This defines a bijection between the coordinates xi, i = 0, 1, 2 on Σ]
e

and the coordinates zi, i = 0, 1, 2 on Σ]∨
e . Hence this gives an isomorphism
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between Σ]
e and Σ]∨

e .
If g, g′ ∈ SU (2 ,L) are elements such that g(e0) = g′(e0) = e, then

|g′∗xi
g∗xi
| ≡ 1 mod π for i = 1, 2. Therefore the choice of z0 does not depend on

the element g ∈ SU (2 ,L) used in the proposition. Hence the identification
Σ]

e
∼= Σ]∨

e does not depend on the choice of the element g ∈ SU (2 ,L).

6.9. Identifying coordinates in P and P∨. The identifications of the
coordinates xi and zi, i = 1, 2 using the equation x1z2 + x2z2 = 0 can
easily be done in advance for all of P and P∨. Then P and P∨ have the line
(0, x1, x2) × (0, z1, z2) with the equation x1z2 + x2z2 = 0 in common. This
line is preserved by the action of the group U(2, L).

The resulting variety contains the blow up of P in the point (x0, 0, 0) and
the blow up of P∨ in (z0, 0, 0). These are the points that are fixed under the
action of the group U(1, L)× U(2, L).

The exceptional line x1 = x2 = 0 of the blow up of P is identified with the
ordinary line (0, z1, z2) ⊂ P∨ and the exceptional line z1 = z2 = 0 of the blow
up of P∨ is identified with the ordinary line (0, x1, x2) ⊂ P by the equation
x1z2 +x2z2 = 0. Since (x0, 0, 0) 6∈ Y s

b and (z0, 0, 0) 6∈ Y s
b
∨, the spaces Y s

b ⊂ P
and Y s

b
∨ ⊂ P∨ are not affected by the blow ups.

6.10 Proposition. Let e ∈ b be an edge and let v,v′ ∈ e be the vertices of
type τ(v) = 0 and τ(v′) = 1. The analytical spaces Σ]

v ⊂ Y s
b and Σ]

v′ ⊂ Y s
b
∨

can be glued together by identifying the open admissable subspaces Σ]
e ⊂ Σ]

v

and Σ]∨
e ⊂ Σ]

v′. Then the image of {x ∈ Σ]
v | ψb(x) ∈ e}

⋃
{z ∈ Σ]

v′ |
ψ∨b(z) ∈ e} in the resulting space is an affinoid isomorphic to XΣ

e .

Proof. Let us define Σ]
v(e) := {x ∈ Σ]

v | ψb(x) ∈ e} = {x ∈ Y s
b | ψb(x) ∈

e, ψb(x) 6= v′, xq+1
0 = −Fb((x1, x2))} ⊂ Σ]

v ⊂ Y s
b . Similarly, we define Σ]

v′(e)

as Σ]
v′(e) := {z ∈ Σ]

v′ | ψ∨b(z) ∈ e} = {z ∈ Y s
b
∨ | ψ∨b(z) ∈ e, ψ∨b(z) 6=

v, π ·zq+1
0 = F∨b ((z1, z2))} ⊂ Σ]

v′ ⊂ Y s
b
∨. Then Σ]

e ⊂ Σ]
v(e) and Σ]∨

e ⊂ Σ]
v′(e).

In fact Σ]
e = {x ∈ Σ]

v(e) | 1 < |g∗x1
g∗x2
| < |π|} and Σ]∨

e = {z ∈ Σ]
v′(e) | 1 <

|g∗z1
g∗z2
| < |π|}.

Let us glue Σ]
v(e) and Σ]

v′(e) by using the isomorphism between Σ]
e

and Σ]∨
e . In the proof above that Σv

∼= Σ]
v, we have already shown that

Σ]
v(e) ∼= Σv

⋂
XΣ

e and that Σ]
v′(e) ∼= Σv′

⋂
XΣ

e . On Σ]
e
∼= Σ]∨

e the equation

(x0
z0

)q+1/(−π) = Fb(x)
F∨b (z)

holds. In Σ]
e seen as a subspace of Σ]

v′(e) ⊂ Σ]
v′ , one

can multiplying the left side by π · zq+1
0 and the right side by F∨b (z). Then
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one obtains the equation xq+1
0 + Fb(x) = 0 that defines the space Σ]

v. Sim-
ilarly, in Σ]

e seen as a subspace of Σ]
v(e) ⊂ Σ]

v, one can use the equation

−π · ( z0
x0

)q+1 =
F∨b (z)

Fb(x)
and multiply the left side by xq+1

0 and the right side by

Fb(x) to obtain the equation that defines the space Σ]
v′ . Therefore the space

constructed is indeed isomorphic to the affinoid space XΣ
e .

The covering {Σ]
v(e),Σ]

e
∼= Σ]∨

e ,Σ
]
v′(e)} is an open admissable covering of

the affinoid space isomorphic to XΣ
e ⊂ Σ. The covering {Σ]

v,Σ
]
e
∼= Σ]∨

e ,Σ
]
v′}

is an open admissable covering of the space obtained by glueing Σ]
v and Σ]

v′

along Σ]
e
∼= Σ]∨

e .

6.11 Theorem. Let Σ] :=
⋃

v∈b Σ]
v/ ∼. Here ∼ denotes the equivalence

relation obtained by applying the isomorphisms Σ]
e
∼= Σ]∨

e for all edges e ∈ b.
Then Σ] is a well-defined rigid analytic variety and Σ] ∼= Σ.

Proof. In prop. 6.10 above it is proved that for the vertices v,v′ ∈ e the
spaces Σ]

v and Σ]
v′ can be glued by applying the isomorphism Σ]

e
∼= Σ]∨

e .
Since the spaces Σ]

e are disjoint for the edges e ∈ b, one can use all the
identifications Σ]

e
∼= Σ]∨

e simultaneously to obtain a well-defined rigid analytic
variety Σ] =

⋃
v∈b Σ]

v/ ∼. Since this space consists of an affinoid isomorphic
to XΣ

e for each edge e in b, the space Σ] is isomorphic to Σ. This concludes
the proof of the theorem.

6.12 Corollary. The following statements hold:

i) Γb acts linearly on
⋃

v∈b,τ(v)=0 Σ]
v ⊂ Y s

b through the coordinates xi,
i = 0, 1, 2.

ii) Γb acts linearly on
⋃

v∈b,τ(v)=1 Σ]
v ⊂ Y s

b
∨ through the coordinates zi,

i = 0, 1, 2.

iii) We have a map ψΣ]

b : Σ] → b, such that ψΣ]

b (x) = ψb(x) for x ∈ Σ]
v

with τ(v) = 0 and ψΣ]

b (z) = ψ∨b(z) for z ∈ Σ]
v with τ(v) = 1.

Proof. The linear action of Γb follows directly from the construction of the
spaces and the fact that the infinite sums Fb((x1, x2)) and F∨b ((z1, z2)) are
Γb-invariant.

Statement (iii) of the corollary follows directly from the fact that the
maps ψb and ψ∨b coincide on Σ]

e and Σ]∨
e for e ∈ b.

36



6.2 Another equivariant embedding

In this subsection we give a different embedding of the admissable subspaces
Σv ⊂ Σ into P ∼= P2

L for the vertices v ∈ b of type τ(v) = 0. It does not
explicitly use the fact that Σ is a covering of Ω1. It uses explicitly the fact
that the component of the reduction of Σ belonging to the vertex v ∈ b is a
hermitian curve. This embedding will later be used to construct a space Y
on which discrete subgroups of PU (3 ,L) act with proper quotients.

6.13. Polynomials for the vertices v ∈ b of type τ(v) = 0. For each
vertex v ∈ b of type τ(v) = 0, we define a homogeneous polynomial bv(x)
of degree q + 1 for x ∈ Y s

b , such that bv(x) ≡ xq+1
0 + av,b((x1, x2)) mod π.

The polynomials satisfy the following condition:

For all γ ∈ Γb and all v ∈ b of type τ(v) = 0 one has bγ(v)(x) = γ∗bv(x).

From now on we change the notation a little. We view the polynomials
av,b(z) and function F∨b (z) as defined for points z ∈ Y s

b
∨ and the function

Fb(x) as defined for points x ∈ Y s
b .

6.14 Lemma. Let v ∈ b be a vertex of type τ(v) = 0 and let e 3 v be an
edge. Let A ∈ b be an apartment that contains the edge e. Let x ∈ Σ]

v ⊂ Y s
b

be a point such that ψb(x) ∈ e. Let x0, x1, x2 be the coordinates belonging
to the apartment A. Then v(x1x2

x20
) = q−1

q+1
· db(v, ψb(x)) and 1 ≥ |x1x2

x20
| >

|π|(q−1)/(q+1). Moreover, |x1x2
x20
| = 1 if and only if ψb(x) is the vertex v of type

τ(v) = 0

Proof. Let v ∈ A be the vertex of type τ(v) = 0 closest to ψb(x). Then
Fb((x1, x2)) ≡ av,b((x1, x2)) mod π and |xq+1

0 | = |av,b((x1, x2))|. Hence

v(
xq+1
0

(x1x2)(q+1)/2 ) = v(
av,b((x1,x2))

(x1x2)(q+1)/2 ) = − q−1
2
· db(v, ψb(x)) by lemma 6.3(i) above.

Therefore v(
x20

(x1x2)
) = − q−1

q+1
· db(v, ψb(x)). Since 0 ≤ db(v, ψb(x)) < 1 the

second statement follows. Moreover, if and only if db(v, ψb(x)) = 0 does
|x1x2
x20
| = 1 hold.

6.15. Analytical subspaces of Y s
b and Y s

b
∨ for vertices and edges in

b. Let v ∈ b be a vertex of type τ(v). If τ(v) = 0, then we take Σv,b :=
{x ∈ Y s

b | db(ψb(x),v) < 1, bv(x) = 0}. If τ(v) = 1, then Σv,b := Σ]
v ⊂ Y s

b
∨.

For edges e ∈ b we define two analytical spaces Σe,b ⊂ Y s
b and Σ∨e,b ⊂

Y s
b
∨. Let Σe,b := {x ∈ Σv,b | ψb(x) ∈ e, ψb(x) 6= v}, where v ∈ e is the

vertex of type τ(v) = 0. Let Σ∨e,b := Σ]∨
e .
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6.16 Proposition. Let v ∈ b be a vertex of type τ(v) = 0. Then Σv,b
∼= Σ]

v.

Proof. The space Σ]
v is defined as Σ]

v = {x ∈ Y s
b | db(ψb(x),v) < 1, xq+1

0 =
−Fb((x1, x2))}. Furthermore, Fb((x1, x2)) ≡ av,b((x1, x2)) mod π. There-
fore xq+1

0 + av,b((x1, x2)) · (Fb((x1, x2))/av,b((x1, x2))) = 0 holds with
Fb((x1, x2))/av,b((x1, x2)) ≡ 1 mod π. For x ∈ Σv,b, one has that bv(x) ≡
xq+1

0 + av,b((x1, x2)) ≡ 0 mod π holds. From this the isomorphism fol-
lows.

6.17 Proposition. Let g ∈ SU (2 ,L) and let e = g(e0) ∈ b be an edge.
Then the spaces Σe,b and Σ∨e,b are isomorphic.

The isomorphism Σe,b
∼= Σ∨e,b is given by taking z1 = x1, z2 = −x2

and as z0 the solution of zq+1
0 =

av,b((x1,x2))F∨b ((z1,z2))

−π·xq+1
0

that satisfies z0 ≡
g∗x1g∗x2

x0
mod π. The identifications given do not depend on the choice of

the element g ∈ SU (2 ,L) such that g(e0) = e.

Proof. Similar to the proof that Σ]
e and Σ]∨

e are isomorphic, once one observes
that av,b((x1, x2)) ≡ Fb((x1, x2)) mod π on Σv,b ⊃ Σe,b.

6.18 Theorem. Let Σb :=
⋃

v∈b Σv,b/ ∼. Here ∼ denotes the equivalence
relation obtained by applying the isomorphisms Σe,b

∼= Σ∨e,b for all edges
e ∈ b. Then Σb is a well-defined rigid analytic variety and Σb

∼= Σ.

Proof. Similar to the proof that Σ] is a well-defined rigid analytic variety
isomorphic to Σ.

6.19. Other possible simplifications. One can again simplify the con-
struction somewhat by identifying the coordinates x1, x2 of P with the coor-
dinates z1, z2 of P∨ through the relation x1z2 + x2z1 = 0.

A more significant simplification can be obtained by also defining polyno-
mials bv(z) ≡ −π ·zq+1

0 +av,b(z) mod π for the vertices v ∈ b of type τ(v) =
1. These polynomials can then be used to define for vertices v ∈ b of type
τ(v) = 1 a analytical space Σ′v,b := {z ∈ Y s

b
∨ | bv(z) = 0, db(ψ∨b(z),v) < 1}.

The proofs in this case are again quite similar to the ones presented above.
For our purposes in the sections below the construction of Σb as presented
here is sufficient.
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7 Stable points in the projective plane

In this section we describe in some detail the points in the projective plane
that are stable for all maximal K-split tori of the group U (3 ,L). In partic-
ular, we describe a U (3 ,L)-equivariant map from the set of stable points to
the building B. The results presented here have been proved in [L-V] and
[V].

The map will be used extensively to construct the uniformising space and
its compactification in the sections that follow. In particular, the map will
allow us to define suitable affinoid spaces and pure affinoid coverings that
correspond to simplices in the building B.

7.1. Stable and semistable points. Let P and P∨ be distinct projective
planes P2

L with coordinates x0, x1, x2 and z0, z1, z2, respectively. Let the group
U (3 ,L) act linearly on P and P∨ preserving the hermitian form h and h∨,
respectively.

For a maximal K-split torus in U (3 ,L) we use the linearisation that is
the restriction to the torus of the U (3 ,L)-linearisation of O(1). The homo-
geneous torus invariants are generated by the monomials x2

0 and x1x2 in P
and by the monomials z2

0 and z1z2 in P∨
Let Y ss ⊂ P and Y ss∨ ⊂ P∨ denote the open analytical subspaces that

contain the points that are semistable for all maximal K-split tori in U (3 ,L).
Similarly, we denote by Y s ⊂ P and Y s∨ ⊂ P∨ the open analytical subspaces
consisting of the points that are stable for all maximal K-split tori in U (3 ,L).
Then Y ss := P2

L − {y ∈ P2(L) | h(y, y) = 0} and Y s := {x ∈ P2
L | ∀(y ∈

P2(L) such that h(y, y) = 0) h(x, y) 6= 0}. Similar descriptions hold for Y ss∨

and Y s∨.

7.2. Criterion for semistability. We define a function r(x) on P2
L involving

torus invariants that can be used to define the space Y ss .
Let A ⊂ B be an apartment with coordinates x0, x1, x2 and let g ∈

U (3 ,L). Then we define:

rgA,A(x) :=

{
0 if x2

0 = x1x2 = 0
max{|g∗x2

0|, |g∗x1g
∗x2|}/max{|x2

0|, |x1x2|} if max{|x2
0|, |x1x2|} 6= 0.

Then rgA,A(x) is well-defined for x ∈ P2
L.

Let r(x) := inf{rgA,A(x) | g ∈ U (3 ,L)} for x ∈ P2
L. Then r(x) > 0

if and only if x ∈ Y ss and there exists an apartment gA ∈ B such that
rgA,A(x) = r(x) (See [P-V] §3.6).
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7.3. The interval of semistability. Let v ∈ B be a vertex of type τ(v) = 0.
To the vertex v belongs an equivalence class of L◦-modules [Mv]. Let Mv be
the module < e0, e1, e2 >.

Let C◦p be the ring of integers of the completion of the algebraic closure of
K. Let Mv be the C◦p-module Mv := Mv ⊗C◦p. For a rational point u ∈ B,
there exists an apartment A 3 v, u and a torus element s ∈ S, where S is
the torus belonging to the apartment A, such that u = s · v. To the point
u = s · v ∈ B we associate the C◦p-module Mu := s · Mv.

The parahoric group Pu ⊂ U (3 ,L) acts on Mu. The equivalence class
[Mu] of C◦p-modules does not depend on the choice of the apartment A, the
torus element s or the vertex v.

If for all apartments A 3 u the reduction x ∈ P(Mu⊗`) of x is semistable
for the reduction S⊗ ` of the torus S that belongs to the apartment A, then
we say that x is semistable in the reduction for U (3 ,L) at u ∈ B.

Let x ∈ Y ss be a point. The interval of semistability I(x) of x for the
group U (3 ,L) is the closure in B of the set of points u ∈ B(Q) such that x
is semistable in the reduction for the group U (3 ,L) at u:
I(x) := {u ∈ B(Q) | x is semistable in the reduction for U (3 ,L) at u} ⊂ B.

The interval of semistability Ib(x) of x ∈ Y ss
b for the group U(2, L) acting

on the building b is defined analogously. The point x ∈ Y ss
b is semistable in

the reduction for the group U(2, L) at u ∈ b, if for all apartments A ⊂ b,
A 3 u, the reduction x ∈ P(Mu⊗`) of x is semistable for the reduction S⊗`
of the torus S that belongs to the apartment A. Then:
Ib(x) := {u ∈ b(Q) | x is semistable in the reduction for U(2, L) at u} ⊆ b.

The subsets Ib(x) ⊆ b and I(x) ⊂ B are convex for a point x ∈ Y ss
b and

x ∈ Y ss, respectively. The interval I(x) is bounded if and only if x ∈ Y s.
(See [V] cor. 4.10.) If x ∈ Y ss−Y s, then the interval of semistability I(x) is
not bounded. As an example take the point (x0, 0, 0) ∈ P2

L that is stabilised
by the group PU (2 ,L) belonging to b ⊂ B. Then I(x) = b.

For the action of U(2, L) on Y ss
b
∨ and U (3 ,L) on Y ss∨ one analogously

defines intervals of semistability I∨b (z) and I∨(z) for points z in Y ss
b
∨ and

Y ss∨, respectively.
For later use we recall some results from [V]:

7.4 Proposition. Let x ∈ Y ss be a point. Then there exists a PU (2 ,L)-
building b ⊂ B such that I(x) = Ib(x). In particular, I(x) ⊆ b.

Proof. See [V] theorem 6.2.
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7.5 Proposition. Let x ∈ Y ss and let b ⊂ B be a PU (2 ,L)-building. Then
the following two statements hold:

i) If the intersection I(x)
⋂

b is non-empty, then Ib(x) = I(x)
⋂

b.

ii) If the intersection I(x)
⋂

b is empty, then Ib(x) = {v}. Here v ∈ b is
the unique vertex such that dB(v, I(x)) = dB(b, I(x)).

Proof. This is a direct consequence of [V] prop. 6.5, where a similar state-
ment is proved for an apartment A ⊂ B, instead of a PU (2 ,L)-building
b ⊂ B.

7.6 Lemma. Let x ∈ Y s
b and let A ⊂ b be an apartment such that ψb(x) ∈ A.

Let ρb(x) := min{v(
x20
x1x2

), 0}, where the xi, i = 0, 1, 2 are the coordinates of

P2
L corresponding to A. Then Ib(x) := {u ∈ b | db(ψb(x), u) ≤ −ρb(x)}.

Proof. For the convenience of the reader we give a proof here, even though
this has been proved in [V] prop. 5.6.

Let A ⊂ b be an apartment containing ψb(x). Let x0, x1, x2 be the
coordinates of P2

L, such that the torus S belonging to A acts diagonally. Since
|g∗xi
xi
| = 1, i = 1, 2 and g∗x0 = x0 for all elements g ∈ Pψb(x)

⋂
SU (2 ,L), the

value of ρb(x) does not depend on the apartment A 3 ψb(x) used.
Let t ∈ S be an element such that |t∗x1| = |t∗x2| holds for the point

x ∈ Y s
b . We replace the coordinates xi by t∗xi for i = 0, 1, 2. Now the

coordinates xi are coordinates of P2
Cp instead of P2

L.
Let s ∈ S be the diagonal element diag(1, s1, s2) w.r.t. the coordinates

xi, i = 0, 1, 2 of P2
Cp . The reduction x̄ is semistable for the torus S ⊗ ` at s ·

ψb(x) if and only if |s∗x2
1| ≤ max{|x2

0|, |x1x2|} and |s∗x2
2| ≤ max{|x2

0|, |x1x2|}.
Furthermore, |s∗x2

1|, |s∗x2
2| ≤ max{|x2

0|, |x1x2|} if and only if ρb(x) ≤ v( s1
s2

) ≤
−ρb(x).

Since db(s·ψb(x), ψb(x)) = v( s1
s2

), the reduction x̄ of x is semistable for the
torus S ⊗ ` at s ·ψb(x) ∈ A ∈ b if and only if db(s ·ψb(x), ψb(x)) ≤ −ρb(x).

Since g ∈ Ps·ψb(x)

⋂
U(2, L) acts only on the coordinates x1 and x2, the

point x is also semistable in the reduction at s ·ψb(x) for the torus gSg−1⊗`.
Hence x is semistable in the reduction at s · ψb(x) for all apartments A 3
s · ψb(x).

Therefore x is semistable in the reduction for the group U(2, L) at the
point u ∈ b if and only if db(u, ψb(x)) ≤ −ρb(x).

41



7.7. A U (3 ,L)-equivariant map ψB : Y s −→ B. Let x ∈ Y s be a point.
Since Y s ⊂ Y s

b , the image ψb(x) ∈ b is well-defined for any PU (2 ,L)-building
b ⊂ B.

Let A ⊂ B be an apartment such that rA,A(x) = r(x). Then A is con-
tained in a unique PU (2 ,L)-building b ⊂ B. Therefore Ib(x) and ψb(x)
are well-defined. Let us consider the set bψb(x) containing the PU (2 ,L)-
buildings b′ 3 ψb(x). Then {ρb′(x) | b′ ∈ bψb(x)} obtains its infinum for some
PU (2 ,L)-building b′′ ∈ bψb(x). Indeed, the compact group Pψb(x) ⊂ U (3 ,L)
that stabilises the point ψb(x) ∈ B acts transitively on the set bψb(x) and the
function ρb′(x),b′ ∈ bψb(x) is continuous. Without loss of generality we may
assume that b = b′′. Then I(x) = Ib(x) ⊂ b and we define ψB(x) := ψb(x).
Therefore ψB(x) is the center of the interval of the interval of semistability
of x (See [V] def. 6.4). A map ψ∨B : Y s∨ → B is defined analogously.

8 An admissable open subspace of Σb

An open admissable subspace Σ◦b ⊂ Σb is defined. We define and describe
in some detail an open admissable subspace Σ◦v,b ⊂ Σv,b. The space Σ◦b is
obtained by glueing the spaces Σ◦v,b for the vertices v ∈ b. The space Σ◦b
will be used to construct the uniformising space in the next section.

8.1. Open admissable subspaces of Σb belonging to vertices v and
edges e in b. For a PU (2 ,L)-building b ⊂ B, we consider the space Σb

that belongs to the group PU (2 ,L) that acts on b ⊂ B. For each vertex
v ∈ b we define an admissable open subspace Σ◦v,b ⊂ Σv,b.

If the vertex v is of type τ(v) = 0, then Σ◦v,b is defined as Σ◦v,b :=
Σv,b

⋂
{x ∈ Y s | dB(ψB(x),v) < 1}. If τ(v) = 1, then Σ◦v,b := Σv,b

⋂
{z ∈

Y s∨ | dB(ψ∨B(z),v) < 1}.
Similarly, we define for edges e 3 b two spaces. Let vi ∈ e be the vertex

of type τ(vi) = i for i = 0, 1. Then Σ◦e,b := Σe,b

⋂
{x ∈ Y s | ψB(x) ∈

e, ψB(x) 6= v0} and Σ◦∨e,b := Σ∨e,b
⋂
{z ∈ Y s∨ | ψ∨B(z) ∈ e, ψ∨B(z) 6= v1}.

8.2 Lemma. Let v ∈ b be a vertex of type τ(v) = 0 and let x ∈ Σ◦v,b. Then
the following statements hold:

i) If ψB(x) 6= v, then v 6∈ I(x).

ii) If ψB(x) = v, then I(x) = {v}.
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iii) Let b′ ⊂ B be a PU (2 ,L)-building that contains the vertex v.

a) If ψB(x) 6∈ b′, then Ib′(x) = {v}.
b) If ψB(x) ∈ b′, then Ib′(x) = I(x).

Proof. To prove the first two statements of the lemma, we consider an element
g ∈ Pv such that ψB(x) ∈ g(A) and I(x) ⊂ g(b). Since dB(ψB(x),v) < 1,
such an element g exists.

Now bv(x) = g∗xq+1
0 +g∗x1 ·g∗xq2+g∗x2 ·g∗xq1+π ·f(x) = 0, where f(x) is a

homogeneous polynomial of degree q+ 1. Without loss of generality we may
assume that |g∗x1

g∗x2
| ≤ 1. Then (g

∗x0
g∗x2

)q+1 + g∗x1
g∗x2

+ (g
∗x1
g∗x2

)q +π · f(x)

g∗xq+1
2

= 0. Since

dB(ψB(x),v) < 1 and ψg(b)(x) = ψB(x), we have 1 ≥ |g∗x1
g∗x2
| > |π|. Therefore

|g∗x0
g∗x2
|q+1 = |g∗x1

g∗x2
| holds, unless |g∗x1

g∗x2
| = 1 and |g∗x1

g∗x2
+ (g

∗x1
g∗x2

)q| < 1 holds.

In the latter case ψB(x) = v and g∗x1
g∗x2

≡ ω mod π for some ω ∈ L◦

such that ωq = −ω. We will show that this cannot occur. There exists an
element h ∈ SU (3 ,L) such that h∗g∗x1 = g∗x1 − ωg∗x2, h∗g∗x2 = g∗x2,
h∗g∗x0 = g∗x0. Then |h∗g∗x1h∗g∗x2

g∗x1g∗x2
| < 1. It follows that ψB(x) 6∈ gA. In

particular, ψB(x) 6= v. This contradicts our assumptions. Hence this cannot
occur.

We conclude that |g∗x0
g∗x2
|q+1 = |g∗x1

g∗x2
| holds. Multiplying both sides with

|g∗x2
g∗x1
|(q+1)/2 gives | g∗x20

g∗x1g∗x2
|(q+1)/2 = |g∗x2

g∗x1
|(q−1)/2. Otherwise stated ρg(b)(x) =

q−1
q+1
· v(g

∗x2
g∗x1

) = − q−1
q+1
· dB(ψB(x),v).

Therefore if ψB(x) 6= v, then v 6∈ Ig(b)(x) and I(x) = Ig(b)(x). If ψB(x) =
v, then I(x) = Ig(b)(x) = {v}. This proves statements (i) and (ii) of the
lemma.

Statement (iii)a follows from statement (i) and the fact that v ∈ b′ is the
vertex closest to I(x) if ψB(x) 6∈ b′. Statement (iii)b is a direct consequence
of statements (i) and (ii) of the lemma.

8.3. Isotropic points. Let v ∈ b ⊂ B be a vertex of type τ(v) = 0 and let
[Mv] be the corresponding equivalence class of L◦-modules. Let a ∈ P(Mv)
be an isotropic point such that the reduction of a is not contained in the
reduction of the P1

L given by x0 = 0 belonging to b. Then a = (a0, a1, a2)

with | a
2
0

a1a2
| = 1.

The closed ball of radius r around a in Σv,b is defined by B(a, r) :=

{x ∈ Σv,b | |h(x,a)
a0·x0 | ≤ r}. Since x0 6= 0 for x ∈ Σv,b, this is well-defined.
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For a vertex v ∈ b ⊂ B we define the set Iso(v,b) as Iso(v,b) := {a ∈
P2(L) | h(a, a) = 0, | a

2
0

a1a2
| = 1}.

8.4 Proposition. Let b ⊂ B be a PU(2, L)-building and let v ∈ b be a
vertex and let e ∈ b be an edge. Then the following statements hold:

i) If τ(v) = 0, then Σ◦v,b = Σv,b −
⋃
a∈Iso(v,b) B(a, |π|).

ii) If τ(v) = 1, then Σ◦v,b = Σv,b.

iii) Σ◦e,b = Σe,b and Σ◦∨e,b = Σ∨e,b.

Proof. Let us prove statement (i) of the proposition. We first show that the
points x ∈ Σv,b such that ψb(x) 6= v are contained in Σ◦v,b. If x ∈ Σv,b, then

ρb(x) := min{v(
x20
x1x2

), 0} = v(
x20
x1x2

) = − q−1
q+1
· db(v, ψb(x)).

Since by assumption ψb(x) 6= v, the value of ρb(x) is non-zero. Therefore
Ib(x) = I(x)

⋂
b holds. The convexity of I(x) and the fact that v 6∈ Ib(x)

imply that I(x) = Ib(x) holds. Therefore ψB(x) = ψb(x) and dB(v, ψB(x)) <
1. Hence x ∈ Σ◦v,b. One verifies that x 6∈ B(a, |π|) for all a ∈ Iso(v,b).

Let us now consider the case where ψb(x) = v. Let a ∈ Iso(v,b) be the
isotropic point a = (a0, a1, a2). Take α = (a0

a2
) and β = (a2

a2
). Then one can

define an element ga ∈ Pv ⊂ SU (3 ,L) as follows: g∗ax1 = x1 + α · x0 + β · x2,

g∗ax2 = x2, g∗ax0 = x0−α ·x2. Then (g∗ax0, g
∗
ax1, g

∗
ax2) = (x0− a0x2

a2
, h(x,a)

a2
, x2).

In particular, for the point a, one has: (g∗ax0, g
∗
ax1, g

∗
ax2) = (0, 0, a2). The set

of elements {ga ∈ Pv | a ∈ Iso(v,b)} acts transitively on the halfapartments
that start in the vertex v and that are not contained in b.

Let us assume that ψb(x) = v and that x 6∈ Y s. Then x 6∈ Σ◦v,b and we
have to show that x ∈ B(a, |π|) for some a ∈ Iso(v,b).

Since x 6∈ Y s, there exist a point y ∈ P2(L) such that h(y, y) = 0 and

h(x, y) = 0. If y ∈ Iso(v,b), then g∗yx1 = h(x,y)
y2

= 0. Hence x ∈ B(y, |π|).
If y 6∈ Iso(v,b), then |y2

0| < |y1y2| and |y1x2 + y2x1| < 1. In particular,
ψb(x) 6= v. This contradicts our assumptions. Hence this cannot occur and
x ∈ Y s must hold.

Let us now assume that ψb(x) = v, x ∈ Y s and moreover, that dB(ψB(x),v) ≥
1. Then x 6∈ Σ◦v,b and we have to show that x ∈ B(a, |π|) for some
a ∈ Iso(v,b). There exists an element ga ∈ SU (3 ,L) such that the apart-
ment gaA contains ψB(x). Then Iga(b)(x) = I(x)

⋂
ga(b) ⊆ I(x). We can

choose the element ga in such a way that the apartment gaA contains a
point r ∈ I(x), that has distance R = max{dB(u, ψB(x)) | u ∈ I(x)}, the
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radius of I(x) to the center ψB(x) of I(x) and distance dB(v, ψB(x)) + R
to the vertex v. Then dB(ψga(b)(x),v) ≥ dB(ψB(x),v) holds. In particular,

dB(ψga(b)(x),v) ≥ 1. Therefore v(g
∗
ax1
g∗ax2

) = v(h(x,a)
a2x2

) ≥ 1. Hence x ∈ B(a, |π|)
and x 6∈ Σ◦v,b.

Next we show that if ψb(x) = v and dB(ψB(x),v)) < 1, then for all
a ∈ Iso(v,b) the point x 6∈ B(a, |π|). Indeed, since dB(ψB(x),v)) < 1, for an
element ga we have either I(x)

⋂
ga(b) = ∅ and Iga(b)(x) = v or Iga(b)(x) =

I(x) and ψga(b)(x) = ψB(x). In both cases 0 ≤ v(g
∗
ax1
g∗ax2

) = v(h(x,a)
a2x2

) < 1 holds.

In particular, x 6∈ B(a, |π|). This concludes the proof of statement (i) of the
proposition.

Let us now prove statement (ii). Let τ(v) = 1 and let z ∈ Σv,b. Then

v(
πzq+1

0

(πz1z2)(q+1)/2 ) = v(
av,b((z1,z2))

(πz1z2)(q+1)/2 ) = − q−1
2
· db(v, ψ∨b(z)). Therefore v(

z20
πz1z2

) =

− 2
q+1
− q−1

q+1
· db(v, ψ∨b(z)). So v(

z20
z1z2

) = q−1
q+1
− q−1

q+1
· db(v, ψ∨b(z)) > 0 holds,

since db(v, ψ∨b(z)) < 1. From this one concludes that I∨b (z) = {ψ∨b(z)} holds.
Therefore ψ∨B(z) = ψ∨b(z) holds and z ∈ Σ◦v,b. Hence Σ◦v,b = Σv,b if τ(v) = 1.

Let us now prove statement (iii). If x ∈ Σe,b then ψb(x) ∈ e and ψb(x) 6=
v. Then I(x) = Ib(x) and ψB(x) = ψb(x) ∈ e. Hence x ∈ Σ◦e,b. Therefore
Σ◦e,b = Σe,b holds. For z ∈ Σ∨e,b one again verifies that ψ∨B(z) = ψ∨b(z) holds.
Therefore Σ◦∨e,b = Σ∨e,b holds.

This concludes the proof of the proposition.

8.5 Proposition. Let Σ◦b :=
⋃

v∈b Σ◦v,b/ ∼, where ∼ denotes the equivalence

relation obtained by applying the identifications Σ◦e,b
∼= Σ◦,∨e,b for all edges

e ∈ b. Then the following four statements hold:

i) The space Σ◦b is a well-defined rigid analytical variety.

ii) The space Σ◦b is an open admissable subspace of Σb.

iii) Σ◦b = Σb −
⋃

v∈b,τ(v)=0

⋃
c∈Iso(v,b) B(c, |π|).

Proof. Statement (i) is clear from the construction. The second statement
follows from the fact that the spaces Σ◦v,b ⊂ Σv,b are open admissable sub-
spaces. The third statement follows from the description of the spaces Σ◦v,b
given in the proposition above.

8.6 Proposition. Let v ∈ b be a vertex of type τ(v). Then:

i) If τ(v) = 0, then Σ◦v,b = Σv,b

⋂
{x ∈ Y s | dB(ψB(x),b) < 1}.
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ii) If τ(v) = 1, then Σ◦v,b = Σv,b

⋂
{z ∈ Y s∨ | dB(ψ∨B(z),b) < 1}.

Proof. Let us prove the first statement of the proposition. For a point
x ∈ Σ◦v,b, the inequality dB(ψB(x),b) ≤ dB(ψB(x),v) < 1 holds. Hence
the inclusion Σ◦v,b ⊂ {x ∈ Y s | dB(ψB(x),b) < 1} holds.

Now let x ∈ Σv,b − Σ◦v,b. Then x ∈ B(a, |π|) for some isotropic point
a ∈ Iso(v,b). The isotropic point a corresponds to an edge e 3 v that
is not contained in b. In particular, if x ∈ Y s, then the path from ψB(x)
to the vertex v contains the edge e. Therefore the vertex v ∈ b is such
that the equality dB(ψB(x),b) = dB(ψB(x),v) holds. It follows that Σ◦v,b =
Σv,b

⋂
{x ∈ Y s | dB(ψB(x),b) < 1} holds.

The second statement is straightforward, since Σ◦v,b = Σv,b if τ(v) = 1.
This concludes the proof of the proposition.

9 The uniformising space

Let Γ ⊂ PU (3 ,L) be a discrete co-compact subgroup that preserves an
almost complete transversal covering T of PU (2 ,L)-buildings. In this section
the spaces Σ◦b for b ∈ T are glued together into a space Y◦.

In §8 a space Σ◦b was constructed by glueing the spaces Σ◦v,b for the
vertices v ∈ b. We now choose the equations that define the spaces Σ◦v,b with
v ∈ b and b ∈ T in a Γ-invariant way. Then Σ◦v,b = Σ◦v,b′ holds, if b,b′ ∈ T
are such that v ∈ b,b′. Since the edges e ∈ B are contained in at most one
building b ∈ T , we can now simultaneously apply the identifications Σ◦e,b

∼=
Σ◦∨e,b for all edges e ∈ b and b ∈ T . The result is a space Y◦ =

⋃
b∈T Σ◦b/ ∼T .

Here ∼T is the equivalence relation that identifies Σ◦v,b with Σ◦v,b′ for vertices
v ∈ b,b′ with b,b′ ∈ T .

The embedding of
∑

v∈b,τ(v)=0 Σ◦v,b into P and of
∑

v∈b,τ(v)=1 Σ◦v,b into
P∨ is such that Γ∩Hb acts linearly on both. These linear actions can now be
extended to

∑
b∈T

∑
v∈b,τ(v)=0 Σ◦v,b and

∑
b∈T

∑
v∈b,τ(v)=1 Σ◦v,b. Therefore

we have a well-defined action of Γ on the analytical space Y◦. The action is
discontinuous.

If the transversal covering T is complete, then the quotient Y◦/∆ is a
projective algebraic curve for normal subgroups ∆ ⊂ Γ of finite index and
without elements of finite order.

In general the quotients Y◦/∆ are not proper. We will compactify such
non-proper quotients in the next section.
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9.1. Polynomials for the vertices contained in |T |. Let Γ ⊂ U (3 ,L) be
a discrete co-compact subgroup that admits a Γ-invariant almost complete
transversal covering T of PU (2 ,L)-buildings. We give extra conditions on
the homogeneous polynomials av,b(z) and bv(x) associated to the vertices v ∈
|T | :=

⋃
b∈T b. These extra conditions allow us to glue the open admissable

subsets Σ◦b ⊂ Σb for b ∈ T together.
Let b0 ∈ T be an PU (2 ,L)-building. Let v0 ∈ b0 be the vertex cor-

responding to the equivalence class [Mv0 ], Mv0 =< e0, e1, e2 > and let
v1 ∈ b0 be the vertex corresponding to the equivalence class [Mv1 ], Mv1 =<
e0, e1, π

−1e2 >. The homogeneous polynomial bv0(x) is such that bv0(x) ≡
xq+1

0 + x1x
q
2 + x2x

q
1 mod π. The homogeneous polynomial av1,b0(z) is of de-

gree q+1 in the coordinates z1 and z2 such that av1,b0(z) ≡ z1(πz2)q+zq1(πz2)
mod π holds. Let v = g(v0). Then bv(x) ≡ g∗bv0(x) mod π. Let v′ ∈ b ∈ T
and let g ∈ U (3 ,L) be such that v′ = g(v1) and b = g(b0). Then the poly-
nomial av′,b(z) is homogeneous of degree q + 1 in the coordinates g∗z1 and
g∗z2 such that av′,b(z) ≡ g∗av1,b0(z) mod π holds.

In this way we associate to each vertex v ∈ |T | ⊂ B of type τ(v) = 0
(τ(v) = 1) that is contained in a PU (2 ,L)-building b ∈ T a homogeneous
polynomial bv(x) (av,b(z)) of degree q+ 1 such that the following two condi-
tions hold:

i) If τ(v) = 0, then bγ(v)(x) = γ∗bv(x) for all γ ∈ Γ.

ii) If τ(v) = 1, then aγ(v),γ(b)(z) = γ∗av,b(z) for all γ ∈ Γ.

Since Char(K) = 0, one can always replace a homogeneous polynomial bv(x)
by the homogeneous polynomial 1

|Γv|
∑

γ∈Γv
γ∗bv(x) to obtain a polynomial

that satisfies the condition (i).

9.2. Construction of the rigid analytic space Y◦ for |T | :=
⋃

b∈T b.
The space Y◦ is defined by associating to each vertex v ∈ |T | a analytic space
Yv and glueing them together along open admissable subspaces Ye and Y∨e
corresponding to edges e ∈ |T |.

The spaces Yv for v ∈ |T | are defined as Yv := Σ◦v,b. Here b ∈ T is a
PU (2 ,L)-building that contains the vertex v. If τ(v) = 1, then the building
b 3 v is unique. If τ(v) = 0, then condition (i) on the polynomial bv(x)
ensures us that the space Σ◦v,b does not depend on the choice of b 3 v.
Clearly, Yv ⊂ Y s if τ(v) = 0 and Yv ⊂ Y s∨ if τ(v) = 1.
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For the edges e ∈ |T | we define the spaces Ye := Σ◦e,b and Y∨e := Σ◦∨e,b.
Let v,v′ ∈ e be the vertices of type τ(v) = 0 and type τ(v′) = 1. Then
Ye ⊂ Yv and Y∨e ⊂ Yv′ are open admissable subspaces.

Since each edge e ∈ |T | is contained in a unique PU (2 ,L)-building b ∈ T
and Ye

∼= Σe,b and Y∨e ∼= Σ∨e,b, we can identify Ye
∼= Y∨e by using the same

identifications used to identify Σe,b
∼= Σ∨e,b.

9.3 Theorem. Let Y◦ :=
⋃

v∈|T | Yv/ ∼, where ∼ is the equivalence relation

that identifies Ye
∼= Y∨e for all edges e ∈ |T |. Then:

i) The space Y◦ is a well-defined rigid analytical space.

ii) Y◦ =
⋃

b∈T Σ◦b/ ∼T . Here ∼T is the equivalence relation that identifies
for all vertices v ∈ B of type τ(v) = 0 the spaces Σ◦v,b

∼= Σ◦v,b′ for all
b,b′ ∈ T with v ∈ b,b′.

Proof. The identifications Ye = Σe,b
∼= Σ∨e,b = Y∨e are well-defined for e ∈ b.

Since each edge e ∈
⋃

b∈T b is contained in a single building b ∈ T and
the spaces Ye are all disjoint, as are all the spaces Y∨e , we can apply the
identifications simultaneously for all edges e ∈ |T |. The result is a well-
defined rigid analytic space Y◦.

The second statement of the proposition follows from the fact that the
identifications used to define the space Y◦ when restricted to the spaces Yv

with v ∈ b for a PU (2 ,L)-building b ∈ T define the space Σ◦b.

9.4 Proposition. Let v ∈ |T | be a vertex of type τ(v) = 0. Let bi ∈ T ,
i = 1, . . . , s be the PU (2 ,L)-buildings that contain the vertex v. Let Hi

∼=
P (U (1 ,L)×U (2 ,L)) ⊂ PU (3 ,L) be the stabiliser of bi and let ai ∈ P(L) be
the point that is fixed by the group Hi for i = 1, . . . , s. Then there exist open
affine subvarieties Xi ⊂ P, i = 1, . . . , s such that the following statements
hold:

i) ai ∈ Xi for i = 1, . . . , s.

ii) The intersection of the reduction Xi⊗ ` and the hermitian curve given
by bv(x) ≡ 0 mod π in P(Mv) ⊗ ` is an open affine subvariety of the
hermitian curve.

iii) Let Rv : P(Mv) → P(Mv ⊗ `) be the reduction map. Let e ∈ bi be an
edge containing the vertex v. We consider the space Ye as a analytic
subspace of P(Mv) = P and the affine varieties Xj ⊗ ` as subspaces of
P(Mv ⊗ `) for j = 1, . . . , s. Then the following statements hold:
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a) Ye

⋂
R−1

v (Xi ⊗ `) = ∅.
b) Ye ⊂ R−1

v (Xj ⊗ `) for j 6= i, j = 1, . . . , s.

iv) Let Xv,bi ⊂ P(Mv) = P be the open admissable analytical subspace
Xv,bi := R−1

v (
⋂
j 6=iXj ⊗ `) if s > 1. If s = 1, then we define Xv,b1 :=

P(Mv). Let e ∈ |T | be an edge such that v ∈ e. Then the analytical
space Ye is contained in the open admissable subspace Xv,bi ⊂ P if and
only if e ∈ bi.

Proof. For the point ai = (x0, 0, 0), we take as Xi the affine variety defined
by x0 6= 0. Let gi,j ∈ Pv ⊂ SU (3 ,L) be an element such that gi,j(ai) = aj.
Then gi,j(bi) = bj holds for j 6= i. We define Xj by Xj := gi,j(Xi) for j 6= i.
We will show that the thus obtained varieties Xj satisfy the proposition.

By construction statement (i) of the proposition holds. On the hermitian
curve given by bv(x) ≡ 0 mod π in P(Mv)⊗`, the intersection is again given
by x0 6= 0 and is affine. Therefore statement (ii) holds.

Let us now prove statement (iii) of the proposition. The reductionRv(Ye) ⊂
P(Mv ⊗ `) consists of a single `-valued isotropic point. This is the isotropic
point that corresponds to the edge e ∈ B. We may assume that Rv(Ye) =
{(0, x1, 0)} holds. Since x0 = 0 holds on Rv(Ye), it follows that the inter-
section Rv(Ye)

⋂
Xi ⊗ ` is empty. Hence statement iii)a of the proposition

holds.
To prove statement iii)b, we take again the element gi,j ∈ Pv ⊂ SU (3 ,L)

such that gi,j(bi) = bj for j 6= i. Then g∗i,jx0 6= 0 holds on Rv(Ye). Therefore
Rv(Ye) ⊂ Xj ⊗ `. From this statement iii)b of the proposition follows.

Statement (iv) of the proposition is a direct consequence of statement
(iii).

9.5. Identification of coordinates in P and P∨. The proposition above
shows that around a vertex v ∈ |T | of type τ(v) = 0, one can simplify the
construction of the analytical space. On each of the open analytic subvarieties
Xv,bi ⊂ P one can identify the coordinates of the line fixed by the group Hi

in P with the coordinates of the line in P∨ fixed by the group Hi. The
identification of coordinates is given by a suitable translate of the equation
x1z2 + x2z1 = 0. As a consequence one blows up the points in P and P∨
that are fixed by the stabilisers Hi of the PU (2 ,L)-buildings bi ∈ T that
contain the vertex v and identifies the exceptional lines in P (resp. P∨) with
the corresponding ordinary lines in P∨ (resp. P).
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Let us now briefly discuss the situation for two PU (2 ,L)-buildings b1,b2 3
v that do not intersect transversally at v. Then they have an edge e 3 v
in common. Let the affine subvarieties X1 ⊂ P and X2 ⊂ P be defined as
above. The isotropic point Rv(Ye) that corresponds to the edge e is nei-
ther contained in X1 ⊗ ` nor in X2 ⊗ `. Therefore Ye is not contained in
R−1

v (X1 ⊗ `) nor in R−1
v (X2 ⊗ `). One needs to use another affine subvariety

Ze ⊂ P(Mv) = P such that Ye ⊂ R−1
v (Ze ⊗ `). On the open analytic space

R−1
v (Ze⊗ `) that contains the space Ye one must make a choice of which co-

ordinates to use, i.e. those belonging to the building b1 or to the building b2.
Therefore one has two choices for the coordinates that can be used to define
the analytic spaces Y∨e and Yv′ , where v′ ∈ e is the vertex different from v.
One somehow has to make a Γ-invariant choice of which of the buildings b1

or b2 one wants to use to define these spaces. This might not be impossible,
but it does make the construction somewhat more complicated. We will not
follow this road.

9.6 Proposition. Let b,b′ ∈ T be two distinct PU (2 ,L)-buildings and let
Σ◦b,Σ

◦
b′ ⊂ Y◦ be the associated subspaces. Then exactly one the following two

statements hold:

a) The intersection b
⋂

b′ is a vertex v and Σ◦b
⋂

Σ◦b′ = Yv = Σ◦v,b =
Σ◦v,b′.

b) The intersection b ∩ b′ is empty and the intersection Σ◦b
⋂

Σ◦b′ = ∅.

Proof. Let Yv′ ⊂ Y◦. One verifies that Yv′
⋂

Σ◦b 6= ∅ if and only if v′ ∈
b. From this and the definition of a transversal covering the proposition
follows.

9.7. A map ψY
◦

B : Y◦ → B. We define a map ψY
◦

B : Y◦ → B by taking:

ψY
◦

B =

{
ψB for points contained in

⋃
v∈|T |,τ(v)=0 Yv

ψ∨B for points contained in
⋃

v∈|T |,τ(v)=1 Yv.

To avoid making the notation unnecessary complex, we do not distinguish
between the use of the coordinates xi and zi, i = 0, 1, 2 for this map. In the
propostion below we show that this is well-defined.

9.8 Proposition. The following statements hold:

i) The map ψY
◦

B is well-defined and Γ-equivariant.
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ii) Σ◦b = {x ∈ Y◦ | dB(ψY
◦

B (x),b) < 1} ⊂ Y◦

iii) If x ∈ Y◦, then dB(ψY
◦

B (x), |T |) < 1.

iv) ψY
◦

B (Y◦) = {u ∈ B(Q) | dB(u, |T |) < 1} = B(Q)− {v | v 6∈
⋃

b∈T b}.

Proof. To show that the map ψY
◦

B is well-defined we have to show that at
edges e ∈ |T | the equality ψB(x) = ψ∨B(z) holds, whenever x ∈ Ye is identified
with z ∈ Y∨e in Y◦. We observe that if b ∈ T contains the edge e, then
ψB(x) = ψb(x) and ψ∨B(z) = ψ∨b(z). Since g∗x1g

∗z2 + g∗x2g
∗z1 = 0 holds and

ψb(x) = v(g
∗x1
g∗x2

) and ψ∨b(z) = v(g
∗z1
g∗z2

) after a suitable identification of the

apartment A ⊂ b, A 3 e with the real line R, we conclude that ψY
◦

B (x) =
ψb(x) = ψ∨b(z) = ψY

◦

B (z) holds.
The map ψY

◦

B is Γ-equivariant by construction.
Statements (ii) and (iii) of the proposition follow directly from the fact

that dB(ψB(x),v) < 1 for x ∈ Yv. The final statement follows from the
fact that Ye = Σ◦e,b = Σe,b. Therefore ψY

◦

B (Ye) = ψb(Σe,b) and ψb(Σe,b) =

e
⋂

Q−{v1,v2}. Here v1 and v2 are the vertices in e. Clearly, v ∈ ψY◦B (Yv).
Therefore the image of ψY

◦

B contains all rational points of the building B,
except for the vertices v ∈ B − |T |.

10 Compactification

Let Γ ⊂ PU (3 ,L) be a discrete co-compact subgroup preserving an almost
complete transversal covering T . Let Y◦ be the analytic space corresponding
to the covering T as constructed in §9. If the covering T is not complete,
then the quotients Y◦/∆ are not compact. Here ∆ ⊂ Γ is a normal subgroup
of finite index and without elements of finite order.

If the transversal covering T is Γ-adapted, then the space Y◦ can be
compactified Γ-invariantly. To compactify the quotient, one adds to the
space Y◦ a suitable admissable space Yv for each vertex v ∈ B that is not
contained in a PU (2 ,L)-building b ∈ T . The spaces Yv that are added are
isomorphic to open admissable subsets of Ω1.

The result is a space Y ⊃ Y◦ on which Γ acts discontinuously such that
the quotients Y/∆ are proper.

10.1. Analytic spaces for the vertices v and edges e not contained
in |T |. For each vertex v ∈ B that is not contained in |T | =

⋃
b∈T b, we

51



define an analytic subspace Yv ⊂ Y s∨. Let gv ∈ SU (3 ,L) be an element
such that the apartment gv(A) contains the vertex v. Let g∗vz0, g

∗
vz1, g

∗
vz2 be

the coordinates of P∨ ∼= P2
L such that the torus S belonging to the apartment

gv(A) ⊂ B acts diagonally. The elements gv are choosen in a Γ-invariant way.
We define Yv := {z ∈ Y s∨ | dB(ψ∨B(z),v) < 1, g∗vz0 = 0}. Then Yv

∼=
{z ∈ Ω1 | db(ψ∨b(z),v) < 1}. Here the space Ω1 ⊂ P1

L, where the P1
L ⊂ P∨ is

given by g∗vz0 = 0 and b is the PU (2 ,L)-building that contains the apartment
gv(A).

For an edge e 6∈ |T | we define two spaces Ye and Y∨e . Let v,v′ ∈ e be
the vertices of type τ(v) = 1 and τ(v′) = 0. Let Ye := {x ∈ Yv′ | ψB(x) ∈
e, ψB(x) 6= v′} ⊂ Y s. Let Y∨e := {z ∈ Yv | ψB(z) ∈ e, ψ∨B(z) 6= v} ⊂ Y s∨.

10.2 Lemma. Let e ∈ B be an edge that is not contained in |T | =
⋃

b∈T b.
Let v0,v1 ∈ e be the hyperspecial and non-hyperspecial vertex, respectively.
Then Ye

∼= {z ∈ Y∨e | dB(ψ∨b(z),v0) < 1
q+1
}. The isomorphism is given by

taking g∗vx0g
∗
vz2 +g∗vx2g

∗
vz1 = 0, where the coordinates are such that g∗vz0 = 0

defines the P1
L ⊂ P∨ used to define Yv1 ⊂ Y s∨ for the vertex v1 ∈ e.

Proof. Without loss of generality, we may assume that gv1 = 1. Then we may
assume the points x ∈ Yv0 satisfy the equation bv0(x) = x1x

q
2 +xq1x2 +xq+1

0 =
0. The isotropic point in Iso(v0,b) that corresponds to the edge e is assumed
to be (0, 0, x2).

The points x ∈ Ye satisfy ψB(x) ∈ e. Therefore 1 > |x1
x2
| > |π| holds.

From bv0(x) = 0, it follows that x1
x2
≡ −xq+1

0

xq+1
2

mod π holds. Therefore one

obtains a P1
` in the reduction with coordinates x0, x2 (and not x1, x2). The

vertex v1 ∈ e satisfies |x1
x2
| = |π|. The L◦-module corresponding to the vertex

v1 is 〈π
1
q+1 · e0, π · e1, e2〉. This gives indeed a line P1

` with coordinates x0 and
x2. Moreover, the points x ∈ Ye satisfy 1 > |x0

x1
| > | 1

q+1
|.

The identification of (x0, x1, x2) ∈ Ye with (0, z1, z2) ∈ Y∨e using the
relation x0z2+x2z1 = 0 gives an isomorphism Ye

∼= {z ∈ Y∨e | dB(ψ∨b(z),v0) <
1
q+1
} as stated in the lemma.

10.3 Lemma. Let v ∈ B − |T | be a (non-hyperspecial) vertex. Let Γv ⊂ Γ
be the stabilizer of the vertex. Then the following holds:

i) There exists an anisotropic point x0 ∈ P2
L fixed by Γv. The restriction

Γv|x⊥0 defines an embedding Γv ↪→ PU(2, L).
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ii) There exists a Γv-invariant pairing of edges e 3 v1.

Proof. The group Γv is contained in the stabiliser Pv ⊂ Γ ⊂ PU(3, L). Since
the vertex v is non-hyperspecial, it follows that Γv stabilizes some anisotropic
point x0. The transversal covering T is Γ-adapted. In particular, no element
of Γv stabilises an edge e 3 v. From this it follows that the restriction
Γv|x⊥0

∼= Γv. From this statement (i) follows.
Let us now consider statement (ii). From p > 2, it follows that the

number of edges e 3 v is even. Since T is Γ-adapted, the stabiliser Γe ⊂ Γv

of an edge e 3 v is trivial. If the number of Γv orbits on edges e 3 v is even,
then we can choose a Γv-invariant pairing {γ′(e), γ′(e′)}, γ′ ∈ Γv, such that
the edges e, e′ 3 v are in two different Γv-orbits. Since there are an even
number of Γv-orbits, we can obtain a pairing by repeating this process for
other orbits.

If the number of orbits is odd, then the order |Γv| is even. We choose
an element γ ∈ Γv of order two. In a Γv-orbit of edges e 3 v we choose an
edge e0. Then the pairing on the orbit is given by {γ′(e0), γ′(γ(e0))}. Since
γ′(γ(e0)) 6= e0 for all γ′ ∈ Γv and γ′(γ(e0)) = e0 implies γ′ = γ, this gives
a well-defined Γv-invariant pairing on the orbit. Repeating the process for
each Γv orbit of edges e 3 v gives the required pairing of edges.

10.4 Definition. We are now able to glue all the spaces Yv, v ∈ B together
Γ-equivariantly along the spaces Ye and Y∨e . For each vertex v ∈ B − |T |
we fix a Γv-equivariant pairing of the edges e 3 v. We choose these pairing
Γ-invariant. Each such pairing induces a pairing of coordinates x1 and x2

that is used in lemma 10.2 above to obtain an isomorphism Ye
∼= {z ∈

Y∨v |dB(ψ∨b(z),v0) < 1
q+1
}. The analytical space Y :=

⋃
v∈B Yv/ ∼, is defined

by the equivalence relation given by the following identifications;{
Ye
∼= Y∨e if e ∈ |T |

Ye
∼= {z ∈ Y∨e | dB(ψ∨b(z),v0) < 1

q+1
} if e 6∈ |T |.

10.5 Theorem. Let Γ ⊂ PU (3 ,L) be a discrete co-compact subgroup and let
∆ ⊂ Γ be a subgroup of finite index that contains no elements of finite order.
Let T be a Γ-adapted transversal covering of B and let Y :=

⋃
v∈B Yv/ ∼

be the analytical space corresponding to the covering T . Then the following
statements hold:

i) The space Y is a well-defined rigid analytic variety.
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ii) The group Γ acts discretely on the rigid analytical space Y and the
quotient Y/∆ is a proper algebraic curve on which the finite group
Γ/∆ acts.

Proof. It is clear from the construction that Y is a well-defined rigid analytic
space. The group ∆ acts on Y by permuting the admissable subspaces Yv ⊂
Y . Since Γ and ∆ act discretely on the building, they act discretely on the
space Y .

Let us now prove that the quotient Y/∆ is proper. To do this we cover
Y with two admissable Γ-invariant affinoid coverings {Xv(r1) | v ∈ B} and
{Xv(r2) | v ∈ B} such that Xv(r1) ⊂⊂ Xv(r2) for all vertices v ∈ B.

Let Xv(R) ⊂ Yv be the analytical subspace Xv(R) := {x ∈ Yv |
dB(ψB(x),v) ≤ R} if τ(v) = 0 and Xv(R) := {z ∈ Yv | dB(ψ∨B(z),v) ≤ R} if
τ(v) = 1. Here R ∈ Q is such that 0 ≤ R < 1. One verifies that the analyti-
cal space Xv(R) is in fact an affinoid subspace of Yv. If 0 ≤ R < R′ < 1, then
Xv(R) ⊂⊂ Xv(R′) holds. If 1 > R ≥ q+1

q+2
, then the union

⋃
v∈BXv(R) = Y .

The condition R ≥ q+1
q+2

is needed, because for edges e ∈ B − |T | the identi-

fication of a point x ∈ Ye with a point z ∈ Y∨e is such that dB(ψ∨b(z),v0) =
1
q+1
· dB(ψb(x),v0). Here v0 ∈ e is the hyperspecial vertex. By construc-

tion the covering is Γ-invariant. Therefore we can take r1 and r2 such that
q+1
q+2
≤ r1 < r2 < 1 holds to obtain our admissable coverings.
After taking, if necessary, a suitable subgroup of ∆ of finite index, we may

assume that the action of Γ on the affinoids is such that γ(Xv(ri))
⋂
Xv(ri) =

∅, i = 1, 2 holds for all γ ∈ Γ, γ 6= 1 and for all v ∈ B. Then the quotient
Y/Γ is covered by the image of finitely many affinoids Xvi(r1) and Xvi(r2)
with i = 1, . . . , s for some s ≥ 1. From this the properness of the quotient
follows. Since Y/∆ is a curve it is algebraic.

10.6 Corollary. The following two statements hold:

i) The group Γ ⊂ PU (3 ,L) acts linearly on
⋃

v∈B,τ(v)=0 Yv through the
coordinates xi, i = 0, 1, 2.

ii) The group Γ ⊂ PU (3 ,L) acts linearly on
⋃

v∈B,τ(v)=1 Yv through the
coordinates zi, i = 0, 1, 2.

Proof. Clear from the construction.

10.7. Construction for subtrees T ⊂ B.
The construction can easily be generalised to the case of a subtree T of the
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building B. Let Γ ⊂ PU (3 ,L) be a discrete subgroup acting on a subtree
T ⊂ B with a finite quotient T/Γ. Let TT be a Γ-invariant almost com-
plete transversal covering of T by PU (2 ,L)-buildings. Then all hyperspecial
vertices v ∈ T are contained in |TT | and the buildings b ∈ TT intersect
transversally.

One first constructs a uniformising space Y◦T by glueing admissable sub-
spaces Σ◦b,T ⊂ Σb with b ∈ TT . The subspaces Σ◦b,T ⊂ Σb are obtained
by removing the balls B(a, |π|) for a ∈ Iso(v,b)T with v ∈ b. Here
Iso(v,b)T ⊂ Iso(v,b) consists of the isotropic points that correspond to
an edge e ∈ T , v ∈ e, that is not contained in b.

If the transversal covering is Γ-admissable, then the space Y◦T can be
compactified into an analytic variety YT on which the group Γ acts discon-
tinuously.

10.8 Example. Let Γ ⊂ PU (3 ,L) be a discrete co-compact subgroup and
T a Γ-invariant transversal covering. Let us assume that T is not complete
and that the group Γ acts transitively on the connected components of |T | =
∪{b ∈ T } ⊂ B. Let T = |T |◦ ⊂ |T | be a connected component and let
ΓT ⊂ Γ be the stabiliser of T . Then the quotient T/ΓT is finite.

The transversal covering TT of T is complete and therefore ΓT -adapted.
Let us assume that the transversal covering T is Γ-adapted. In particular,
we can construct rigid varieties Y and YT on which the groups Γ and ΓT
act discontinuously, respectively. Let ∆ ⊂ Γ be a subgroup of finite index
without elements of finite order. We assume that ∆ acts transitively on the
connected components of |T |. Let ∆T ⊂ ∆ be the stabiliser of the tree T .

The curves Y/∆ and Y◦T/∆ = YT/∆T both contain the open admissable
subspace Y◦/∆. They are different compactifications of the space Y◦/∆.
Let ϕT : YT −→ YT/∆T be the quotient map. Let Y◦◦T ⊂ YT be the open
subspace ϕ−1

T (Y◦/∆). Then Y◦/∆ = Y◦◦T /∆T holds. Since ∆T ⊂ ∆ is not
normal, the quotient map Y◦ −→ Y◦/∆ does not factor through the space
Y◦◦T .

11 Reduction and genus

We define a Γ-invariant map from the space Y to the building B. Using this
map we construct a Γ-invariant pure affinoid covering of Y . A description of
the reduction of Y w.r.t. this covering is given. We also describe a semistable
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reduction and give a formula for the genus of the quotients Y/∆ in terms of
its reduction.

11.1 Definition. A map ψYB : Y → B. Let us define a map ψYB : Y → B
by:

ψYB =

{
ψB on

⋃
v∈B,τ(v)=0 Yv −

⋃
e∈B−|T | Ye

ψ∨B on
⋃

v∈B,τ(v)=1 Yv.

We again do not distinguish between the coordinates xi and zi, i = 0, 1, 2 for
the map ψYB . In the proposition below we show that the map is well-defined.

11.2 Proposition. The following statements hold:

i) The map ψYB : Y → B is well-defined and Γ-equivariant.

ii) ψYB |Y◦−⋃e∈B−|T | Ye = ψY
◦

B .

iii) The complement of Y◦ in Y is Y−Y◦ = {x ∈ Y | dB(ψYB (x), |T |) ≥ 1
q+1
}

= {x ∈ Y | ∃(v ∈ B − |T |) dB(ψYB (x),v) ≤ q
q+1
}.

Proof. Clear from the definition.

11.3 Definition. Affinoid subspaces of the space Y. For each edge e ∈ B and
each vertex v ∈ B affinoid subspaces XYe , X

Y
v ⊂ Y are obtained by taking

XYv := {x ∈ Y | ψYB (x) = v} and XYe := {x ∈ Y | ψYB (x) ∈ e}. Let C be the
covering C := {XYv , XYe | v, e ∈ B} of the space Y .

The affinoid spaces XYe are obtained by removing some points from the
reduction of the spaces XΣ

e for e ∈ |T |. Therefore the affinoid algebra is not

uniquely determined by our definition. Over the field L not both h and π
1
q+1

h

are defined. As in the case of Σ we choose the affinoid algebra in such a way
that the components at the hyperspecial vertices have multiplicity q+ 1 and
the components at the other vertices have multiplicity one.

11.4 Theorem. The covering C = {XYv , XYe | v, e ∈ B} is a Γ-invariant
pure affinoid covering of the rigid analytic space Y. The reduction of the
space Y w.r.t. C is as follows:

i) To each vertex v ∈ |T | ⊂ B corresponds a hermitian curve H. If the
vertex v is hyperspecial, then this component has multiplicity q + 1,
otherwise it has multiplicity one.
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ii) To each vertex v ∈ B − |T | corresponds a projective line P1
` with on it

a hermitian form.

iii) The components of the reduction corresponding to the vertices v,v′ ∈ B
intersect if and only if there exists an edge e 3 B with v,v′ ∈ e. In
that case, the point of intersection is `-valued (and isotropic) in both.

Proof. It follows directly from the definition that the covering C is pure.
From the definitions of the affinoids one easily obtains a description of the
affinoids and their reduction. This is similar to the determination of the
reduction of Σ in theorem 5.8. We leave the details to the reader.

11.5 Remark. Alternative pure affinoid coverings of the space Y. One can
construct a pure affinoid covering of Y by affinoids Xv(R) by using two
distinct values R1 and R2. Let us take for vertices v ∈ |T | the affinoids
Xv(R1) and for the vertices v ∈ B − |T | the affinoids Xv(R2) with 0 <
R1, R2 < 1. The covering is an admissable affinoid covering of Y if 1

2
≤ R1 <

1 and 2q+1
2(q+1)

≤ R2 < 1. The covering is pure if R1 = 1
2

and R2 = 2q+1
2(q+1)

.

Let us define affinoid spacesXYv (R) for vertices v ∈ B as follows: XYv (R) :=
{x ∈ Y | dB(ψYB (x),v) ≤ R} with 0 < R < 1. For 1

2
≤ R < 1 the covering is

an admissable affinoid covering of the space Y . If R = 1
2
, then the covering

is a pure affinoid covering of Y .
For hyperspecial vertices v such that all edges e 3 v are contained in |T |

and for non-hyperspecial vertices v the equality XYv (R) = Xv(R) holds.

11.6 Definition. Let e ∈ B be an edge and let v0 ∈ e be the hyperspecial
vertex. We identify the edge e with the interval [0, 1] ⊂ R such that the
hyperspecial vertex corresponds with 0. We subdivide the edge e into q
subintervals e(i) := [ i

q+1
, i+1
q+1

], i = 0, . . . , q. Let ve(i), i = 0, . . . , q+ 1 denote

the vertex corresponding to i
q+1

. Then ve(0) := v0 is the hyperspecial vertex

and ve(q + 1) non-hyperspecial vertex of e.
The building with the edges e 6∈ |T | thus subdivided will be denoted by

BT . More precisely {v ∈ BT } = {v ∈ B}∪ {ve(i) | e ∈ B− |T |, i = 1, . . . , q}
and {e ∈ BT } = {e ∈ |T |} ∪ {e(i) | e ∈ B − |T |, i = 0, . . . , q}.

Let CT be the pure affinoid covering CT := {XYv , XYe | v, e ∈ BT }. Here
XYv := {x ∈ Y | ψYB (x) ∈ v} and XYe := {x ∈ Y | ψYB (x) ∈ e} are defined as
above, but with edges and vertices in BT instead of B.

11.7 Proposition. The affinoid covering CT is a pure affinoid covering of
Y. The reduction of Y w.r.t. to the covering CT is as follows:
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i) A component H for the vertices v ∈ |T | and a component P1
` with on

it a hermitian form for vertices v ∈ BT − |T |

ii) Two components intersect in an `-valued isotropic point if and only if
the corresponding vertices that form an edge in BT .

iii) Over L(π
1
q+1 ) the reduction is semistable.

Proof. The description of the reduction follows directly from the definitions.

The extension to L(π
1
q+1 ) is needed to ensure that all components H have

multiplicity one. For edges e 6∈ |T | the affinoid is essentially given by f · π
f

= π

for some suitable element f in the affinoid algebra belonging toXYe . To obtain
a divisor with normal crossings one needs to subdivide this affinoid as is done
in definition 11.6.

11.8 Proposition. The genus of a curve Y/∆ is given by g(Y/∆) = 1 +

ne +
∑

v∈B/∆(gv − 1) = 1 + ne + q2−q−2
2

]{v ∈ |T |/∆}− ]{v ∈ (B − |T |)/∆}.

Proof. The genus of a curve and the genus of its reduction are the same
(See e.g. [F-P] proposition 5.6.2). Therefore we can use the description
of the reduction to compute the genus of the curve Y/∆. The genus of

the hermitian curve H equals q2−q
2

. To the vertices v ∈ |T | corresponds a
hermitian curve and to the vertices v ∈ B − |T | a line P1. From this the
formula follows.

12 Comparison and speculation

We show that the spaces Y corresponding to complete transversal coverings
differ from some known moduli spaces. We further speculate about systems
of étale coverings of Y and on how the construction presented here can be
generalised to other groups.

12.1 Definition. Let T1, T2 be two distinct complete transversal coverings
of the building B, i.e. |T1| = |T2| = B. We call T1 and T2 isomorphic and
write T1

∼= T2 if there exists an element g ∈ PU (3 ,L) such that g(T1) = T2.

12.2 Lemma. Let T1 6∼= T2 be two complete transversal coverings of B. Let
Y1 and Y2 be the uniformizing spaces belonging to T1 and T2, respectively.
Then the generic fibres of Y1 and Y2 are isomorphic as point sets, but not as
rigid analytic spaces.
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Proof. To proof that the sets of points in the generic fibres of Y1 and Y2

are isomorphic we construct isomorphic non-admissable coverings of both Y1

and Y2. For hyperspecial vertices v0 ∈ B we define Xv0(i) := {x ∈ Yi |
ψYiB (x) = v0} for i = 1, 2. For non-hyperspecial vertices v1 ∈ B we define
Yv1(i) := {x ∈ Yi | dB(ψYiB (x),v1) < 1} for i = 1, 2.

The covering Ci := {Xv0(i), Yv1(i) | v0,v1 ∈ B, τ(v0) = 0, τ(v1) = 1}
cover the space Yi for i = 1, 2. One easily sees that Xv0(1) ∼= Xv0(2) and
Yv1(1) ∼= Yv1(2) hold. Moreover, each point in the generic fibre of the space
Yi is contained in exactly one of the analytic spaces contained in the covering
Ci, i = 1, 2. Therefor the generic fibres of Y1 and Y2 are isomorphic as point
sets. None of the spaces contained in the covering Yi, i = 1, 2, intersect.
Hence these coverings are not admissable.

To show that the spaces Y1 and Y2 are not isomorphic as analytic spaces
requires more work. TO DO!!

12.3 Comparison. No relation with certain known moduli spaces. In [Vol]
a moduli space of principally polarized abelian varieties of dimension three
related to the group GU(1, 2) over Qp is described in detail. The components
of the reduction of the supersingular locus are hermitian curves H and cor-
respond to the hyperspecial vertices of the building. The p + 1 components
of the reduction belonging to the hyperspecial vertices that are neighbours
of a single non-hyperspecial vertex v1 intersect in a single Fp2-valued point.
(See corollary 6.2 and theorem 4 of [Vol].)

Obviously, this closed fibre differs from the closed fibres of the spaces Y
for a complete transversal covering T of B. In particular, the spaces Y seem
to be unrelated to this moduli space.

In [Vol-W] example 4.8 a similar moduli space for the group GU(1, 3) is
described. The reduction is again a tree of Hermitian curves that intersect
in the Fp2-valued points. In this case each such point is contained in p3 + 1
curves. Again the reduction is far removed from that of our spaces Y .

12.4 Speculation. System of étale coverings of Y. The space Σ is a con-
nected component of a space that is part of a system of SU (2 ,L)-equivariant
étale coverings of Ω1. Therefore the space Σ itself has a system of SU (2 ,L)-
equivariant étale coverings. Each element of this system of coverings is again
a connected component of an étale covering of Ω1.

Let Γ ⊂ PU (3 ,L) be a discrete co-compact subgroup that admits a com-
plete transversal covering T . Let Y = Y◦ =

⋃
b∈T Σ◦b/ ∼T be the analytic

space that corresponds to the covering T .
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Each space Σ◦b, b ∈ T is an open admissable subspace of a space Σ. The
group SU (2 ,L) belonging to b acts on Σ◦b. In particular, each space Σ◦b
admits a system of SU (2 ,L)-equivariant étale coverings. It seems likely that
these systems for the spaces Σ◦b, b ∈ T can be glued together into a system
of Γ-equivariant étale coverings of the space Y . The Galois group of such a
system of étale coverings would be the stabiliser of Σ in the system of étale
coverings of Ω1.

Let us describe the Galois group in some detail. Let D ⊃ K be a central
division algebra with invariant 1/2 and maximal order OD ⊂ D. Then
D = L[Π]/(Π2 − π) and OD = L◦[Π]/(Π2 − π). The element Π ∈ D acts on
elements a ∈ L as Πa = σ(a)Π, where σ is the generator of Gal(L/K). The
Galois group of this system of étale coverings of Ω1 is the group O∗D.

The n-th level of this system is an étale covering of Ω1 with Galois group
(OD/ΠnOD)∗. Drinfel’d only considers the levels 2m, m ∈ Z that have Galois
groups (OD/πmOD)∗ = (OD/Π2mOD)∗ of this étale system. The space Σ is
part of the first level of this étale system. The Galois group acting on this
level is (OD/ΠOD)∗ = (L◦/πL◦)∗ = `∗. Of course, this level is not an official
member of the étale system as defined by Drinfel’d.

It follows that the Galois group of the system of Γ-invariant étale coverings
of Y would be the group 〈g ∈ O∗D | g ≡ 1 mod Π〉.

12.5 Speculation. Generalisation. We briefly sketch how the construction
presented in this article could possibly be generalized to higher dimensions.

Let G be a semisimple algebraic group defined over K with building BG.
Let us assume that there exists a semisimple algebraic group H ⊂ G of the
same rank rkK(G) = rkK(H). Then the building bH of the group H(K) has
the same rank as the building BG. A transversal covering T of the building
BG by H(K)-subbuildings consists of buildings b ∼= bH such that non-empty
intersections of buildings b,b′ ∈ T are buildings of rank strictly less than
rkK(G) and, moreover, each hyperspecial vertex v ∈ BG is contained in a
H(K)-building b ∈ T .

Let us now assume that the groupG is quasisplit, splits over an unramified
extension of the field K and has a root system ΦG with roots of different
length. Let ΦH ⊂ ΦG be the root system consisting of the longest roots in ΦG.
To the root system ΦH belongs an algebraic group H ⊂ G of rank rkK(H) =
rkK(G). In this situation it seems likely that Γ-invariant transversal coverings
exist for discrete co-compact subgroups Γ ⊂ G(K).

The long roots in ΦG are either of type A or of typeD. If the long roots are
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of type A, then the group H(K) is a product of groups SL(n,K). Therefore
the group H(K) acts on p-adic symmetric space ΩH of dimension rkK(H).
In this case it seems likely that one can construct a rigid analytic space Y for
a discrete subgroup Γ ⊂ G(K) such that Y/Γ is a proper algebraic variety.

To construct the analytic space Y one needs a suitable finite H(K)-
equivariant étale covering ΣH −→ ΩH . To allow glueing of the spaces ΣH

corresponding to buildings b ∈ T , the component of the reduction Σv,H at
a hyperspecial vertex v ∈ b ⊂ BG of the space ΣH must be a homogeneous
variety for the group G(Fq).

The components of the reduction of the space ΩH at hyperspecial ver-
tices are compactifications of the Deligne-Lusztig variety X(wH)H belonging
to a Coxeter element wH of H(Fq). The variety X(wH)H for the group
SL(n,Fq) equals X(wH)H ∼= Pn−1

Fq − {Fq − rational hyperplanes} (See [O-R]
Introduction). It seems likely that the components of the reduction of the
space ΣH at hyperspecial vertices are compactifications of the Deligne-Lusztig
variety X(wG)G that belongs to a (twisted) Coxeter element wG of the
group G(Fq). A necessary (and probably sufficient) condition for the ex-
istence of such a variety ΣH is the existence of a H(Fq)-equivariant étale
map ϕ : X(wG)G −→ X(wH)H defined over some extension Fqd ⊂ Fq
such that ϕ(X(wG)G) ⊂ X(wH)H is an open subvariety. For the group
G(Fq) = PU(3,Fq2) this holds, since in this case X(wG)G ∼= H−H(Fq2) and
X(wH)H = P1

Fq − P1(Fq).
Such a construction would give spaces Y for quasisplit semisimple alge-

braic groups that split over an unramified extension of K with root system
ΦG = B3, BCr, Cs, G2, r ≥ 1, s > 1.

13 Examples

In §13.1 we consider the action of the groups G0
∼= S3 nC2

q+1 and G′0
∼= C2

q+1

on the hermitian curve H ⊂ P2
` . We describe their action on the isotropic

points of P2
` and determine the spreads invariant under the action of G0 and

G′0.
In §13.2 we construct discrete co-compact subgroups Γ,Γ′ ⊂ PU (3 ,L)

using the groups G0 and G′0. The groups Γ and Γ′ act transitively on the
hyperspecial vertices of the building B. We determine the almost complete
transversal coverings of B that are invariant under the action of the groups
Γ and Γ′.
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In §13.3 we study the quotients of spaces Y and Y ′ that correspond to
the Γ- and Γ′-invariant transversal coverings of the building B, respectively.
Let ∆ ⊂ Γ and ∆′ ⊂ Γ′ be normal subgroups of finite index and without
elements of finite order such that Γ/∆ ∼= G0 and Γ′/∆′ ∼= G′0. We determine
the genus of the curves Y/∆ and Y ′/∆′. The quotients of Y/∆ by G0 and
of Y ′/∆′ by G′0 are projective lines P1

L.

13.1 Finite groups and spreads

Let h` be the standard unitary form on `3 given by h`(x, y) = x0y
q
0 + x1y

q
1 +

x2y
q
2. We study the action G0

∼= S3 n C2
q+1 and G′0

∼= C2
q+1 on the set of

isotropic points in P2
` . We first consider the action of the group G0 on the

hermitian curve H defined by h`(x, x) = 0. We also determine the spreads
invariant under the action of G0 and G′0.

13.1 Proposition. Let us assume that p 6= 2. Let G0 := S3 n C2
q+1 act on

the hermitian curve H. Then H/G0 = P1
` . If p 6= 3 then the quotient map

ϕ : H −→ H/G0 = P1
` has three branch points and branch groups C2(q+1), C3

and C2. If p = 3 the quotient map has two branch points with branch groups
C2(q+1) and S3.

Proof. The quotient map decomposes as follows H −→ H/C2
q+1
∼= P1

` −→
P1
`/S3 = H/G0

∼= P1
` . The first part of the map gives three branch points

(0, 1,−1), (1, 0,−1), (1,−1, 0) ∈ P1
` with branch groups Cq+1. Here we as-

sume that the quotient P1
` is given in a plane P2

` by x0 + x1 + x2 = 0.
If p 6= 3, then the quotient map P1

` −→ P1
`/S3 has three branch points.

The branch groups are C2, C2 and C3. The ramification points with group
C2 are given by coordinate permutions of (0, 1,−1) and (2,−1,−1). The
ramification points of type (0, 1,−1) are branch points with group Cq+1.
The group Cq+1 acts only on the coordinate x0 and the group C2 fixes x0 and
permutes the coordinates x1 and x2. The stabilizer of an `-valued isotropic
point of H is contained in a Borel subgroup of the group SU(3, `). Since
p - 2(q + 1), the stabilizer is abelian. Further calculation shows that the
group is cyclic of order 2(q + 1). Therefore this gives a branch point with
branch group C2(q+1). The points of type (2,−1,−1) give a branch group C2.
The ramification group C3 stabilizes the points (1, ω, ω2) and (1, ω2, ω) with
ω3 = 1. Hence the group C3 corresponds to a branch point.

If p = 3, then the group S3 is a Borel group B(2, 1) of order 6. The
quotient of P1

` by the Borel group has two branch points. The branch groups
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are C2 and S3. The group S3 stabilises the point (1, 1, 1) ∈ P1
` . The groups

of type C2 also fix points that are coordinate permutations of the point
(0, 1,−1). The latter again results in a branch group C2(q+1) for the quotient
of H by G. Therefore in this case we have two branch points and the branch
groups are C2(q+1) and S3.

13.2 Table. In the table we describe the G0-orbits on `-valued isotropic
points.

condition on q stabilizer ] orbits size a point in the orbit

p = 3

C2(q+1) 1 3(q + 1) (0, 1, a), aq+1 = −1

S3 1 (q + 1)2 (1, 1, 1)

1 (q − 3)/6 6(q + 1)2

q ≡ 1 mod 3

C2(q+1) 1 3(q + 1) (0, 1, a), aq+1 = −1

C2 1 3(q + 1)2 (1, 1, b), bq+1 = −2

C3 1 2(q + 1)2 (1, c, c2), cq+1 = ω, ω3 = 1

1 (q − 7)/6 6(q + 1)2

q ≡ 2 mod 3

C2(q+1) 1 3(q + 1) (0, 1, a), aq+1 = −1

C2 1 3(q + 1)2 (1, 1, b), bq+1 = −2

1 (q − 5)/6 6(q + 1)2

13.3 Proposition. i) If p = 3, then a maximal G0-invariant partial

spread consists of q2 − 2q lines. There are 3
q−3
6 such maximal partial

spreads.

ii) If q ≡ 1 mod 3, then a maximal G0-invariant partial spread consists

of q2 − 3q − 1 lines. There are 3
q−7
6 such partial spreads.

iii) If q ≡ 2 mod 3, then there exist 3
q−5
6 distinct G0-invariant spreads.

Proof. We will first show that a G0-invariant (partial) spread can contain
only lines a⊥ such that some coordinate ai = 0 for i = 0, 1, 2. Then we will
determine for each G0-orbit of isotropic points which choices of lines a⊥ are
possible and whether they are contained in the partial spread or not.

Let a ∈ P2(`) be an anisotropic point. Let us assume that the line a⊥

is contained in a G0-invariant (partial) spread. Then some coordinate ai,
i = 1, 2, 3 is zero. Indeed, if all coordinates ai 6= 0, then the orbit G0 · a
consists of at least (q + 1)2 > q2 − q + 1 points. Since a spread consists of
q2 − q + 1 lines, this cannot be.
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Let a ∈ P2(`) be an anisotropic point with at least one coordinate equal
to zero. The isotropic points in the line a⊥ are contained in a single G0-orbit
G0 · y. It follows that the isotropic points in the lines in the orbit G0 · a⊥
form the orbit G0 · y.

Let a′ ∈ P2(`) be another anisotropic point with at least one zero coordi-
nate. Let us assume that the intersection a⊥∩a′⊥ is an isotropic point. Then
the isotropic points in orbits G0 · a⊥ and G0 · a′⊥ cover the same G0-orbit
G0 · y. In particular, choosing for each G0-orbit G0 · y of isotropic points an
anisotropic point a ⊥ y is almost equivalent to defining a (partial) spread.
The only condition required is that none of the lines in the orbits G0 · a⊥
intersect in an isotropic point.

Let us now determine the size of the orbits G0 · a for anisotropic points
a ∈ P2(`) such that some coordinate ai = 0 for i = 0, 1, 2. If a ∈ G0 · (1, 0, 0),
then the orbit has size 3 and if a ∈ G0 · (1,−1, 0), then the orbit consists of
3(q + 1) points. In all other cases the orbit G0 · a contains 6(q + 1) points.

All we have to do now is to see in which cases for y ∈ a⊥ the equality
(q + 1) · |G0 · a| = |G0 · y| holds. For this we use table 13.2. If the orbit
G0 · y consists of points stabilised by a group C2(q+1), then yi = 0 for some
i ∈ {0, 1, 2}. In particular, |G0 · y| = 3(q + 1) and we need to take a ∈
G0 · (1, 0, 0). If the orbit G0 · y consists of points stabilised by a group C2,
then |G0 · y| = 3(q + 1)2 and we need to take a ∈ G0 · (1,−1, 0). If the orbit
G0 · y consists of points stabilised by a group C3 if q ≡ 1 mod 3 or of points
stabilised by a group S3 if p = 3, then no choice of a orbit G0 · a has the
correct size. Hence these points cannot be contained in a maximal partial
spread.

If the orbit G0 · y consists of points with trivial stabiliser, then it has size
6(q+ 1)2 and a 6∈ G0 · (1, 0, 0), G0 · (1,−1, 0) gives the same size. In this case
all the coordinates yi 6= 0 and we have three possibilities for the choice of the
anisotropic point a ⊥ y.

Therefore the number of maximal G0-invariant (partial) spreads equals
3m, where m is the number of G0-orbits of isotropic points with trivial sta-
biliser. Moreover, the isotropic points that are covered by the (partial) spread
have stabiliser C2(q+1), C2 or 1. In particular, only for q ≡ 2 mod 3 do full
spreads exist. The proposition follows from this and table 13.2.

13.4 Proposition. Let G′0 be the group G′0
∼= C2

q+1. Then there exist 3q−2

G′0-invariant spreads.

Proof. Let a ∈ P2(`) be an anisotropic point such that the line a⊥ is contained
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in a G′0-invariant spread. Then some coordinate ai = 0 with i ∈ {0, 1, 2}. If
none of the coordinates ai are zero, then |G′0 · a| = (q + 1)2 > q2 − q + 1.
Hence this cannot be. Furthermore all the isotropic points in the line a⊥ are
contained in a single G′0-orbit.

Therefore we can use the same methods as in the proof of prop. 13.3
above. The size of orbits G′0 ·a is 1 if a ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and q+1
in all other cases. The size of orbits G′0 · y of isotropic points is q+ 1 if yi = 0
for some i ∈ {0, 1, 2} and (q+1)2 in all other case. Now (q+1)·|G′0·a| = |G′0·y|
with y ∈ a⊥ holds for all G′0-orbits. Again there are three choices possible

for a ⊥ y if all the coordinates yi 6= 0. There are q3+1−3(q+1)
(q+1)2

= q − 2 distinct
orbits of isotropic points with non-zero coordinates. Therefore there exist
3q−2 distinct G′0-invariant spreads.

TO DO: Isomorphism under S3-action???

13.5 Remark. If q ≡ 2 mod 3, then the set of lines {g((1, 0, 0)⊥), g((1, 1, 0)⊥) |
g ∈ G0} is a minimal G0-adapted partial spread. If p = 3 or q ≡ 1 mod 3,
then no G0-adapted partial spread exists.

The set of lines {(1, 0, 0)⊥, (0, 1, 0)⊥, (0, 0, 1)⊥} is a minimal G′0-adapted
partial spread.

13.2 Discrete groups and transversal coverings

We use the groups G0 and G′0 to construct amalgams Γ and Γ′. We embed
these amalgams into the group PU (3 ,L) such that the groups act transitively
on the hyperspecial vertices of the building B. We determine the complete
transversal coverings invariant under the action of the groups Γ and Γ′.

13.6 Definition. Let V be the vector space V := L3 with on it the standard
unitary form h(x, y) given by h(x, y) = x0y0 + x1y1 + x2y2. Let v ∈ V be a

vector. We define a map ρv : L3 −→ L3 by ρv(x) = x+ (ζq+1 − 1) · h(x,v)
h(v,v)

· v.

The element ρv multiplies the vector v by ζq+1 and acts trivially on v⊥. The
element ρv preserves the unitary form h(x, y) and is an element of the group
PU (3 ,L) acting on P(V ).

We will use the elements ρv for suitable vectors v ∈ V together with the
group G0

∼= S3 n C2
q+1 to define a discrete group Γ ⊂ PU (3 ,L). To avoid

edges e 3 v0 stabilised by subgroups C3 we assume that q ≡ −1 mod 3.
The Γv0-orbits of the anisotropic points (1, 0, 0) and (1, 1, 0) consist of 3

and 3(q+1) vectors, respectively. These vectors have stabiliser C2nC2
q+1 and
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C2×Cq+1, respectively. To obtain a group Γ that acts transitively on vertices
v of type τ(v) = 0, we add to the stabilizer of each vertex v neighbouring
v0 a group Cq+1, that acts transitively on the edges e 3 v.

Let Γ be the amalgam of G0
∼= S3 n C2

q+1 with a group C2 n C2
q+1 along

C2(q+1), with a group C2 ×Cq+1 along C2 and with q−5
6

groups Cq+1 along 1.
If q ≡ 2 mod 3, then the amalgam Γ is defined as being:

Γ :=(C2 n C2
q+1) ∗C2(q+1)

(S3 n C2
q+1) ∗C2 (C2 × Cq+1)

∗ . . . . . . ∗
Cq+1 Cq+1︸ ︷︷ ︸

q−5
6

If p = 3, then we define a similar amalgam Γ as follows:

Γ :=(C2 n C2
q+1) ∗C2(q+1)

(S3 n C2
q+1) ∗S3 (S3 × Cq+1)

∗ . . . . . . ∗
Cq+1 Cq+1︸ ︷︷ ︸

q−3
6

13.7 Proposition. i) If q ≡ 2 mod 3, then the group Γ can be embedded
into PU (3 ,L) as a discrete co-compact subgroup that acts transitively
on the hyperspecial vertices of B.

ii) If p = 3 and the extension K ⊃ Q3 is unramified, then the group Γ can
be embedded into PU (3 ,L) as a discrete co-compact subgroup that acts
transitively on the hyperspecial vertices of B.

Proof. Let us first prove statement (i). Let the equivalence class [M0] :=
[〈e0, e1, e2〉] correspond to the vertex v0 ∈ B. Let Γv0 be the group Γv0

∼=
S3 n C2

q+1. Then Γv0 acts on M0 and preserves the unitary form h(x, y).
The edges e 3 v0 correspond to the isotropic points in P(M0 ⊗ `). The

module M1 that corresponds to a neighbouring vertex v1 ∈ B is given by
M1 := 〈 v

π
,M0〉. Here the vector v ∈ M0 is choosen such that the reduction

v mod π is the isotropic point that corresponds to the edge e 3 v0,v1 and
h(v, v) = π holds. The element ρv ∈ PU (3 ,L) preserves the module M1 and
acts transitively on the edges e ∈ v1.

The element ρv depends on the choice of the vector v ∈ M0. To embed
the amalgam Γ into PU (3 ,L) as a discrete subgroup we need to impose
some conditions on the choice of the vectors v. The choice of the q3 + 1
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vectors v has to be G0-invariant. For a vertex v1 in a G0-orbit such that the
edge e 3 v0,v1 has trivial stabilizer, this causes no problems. One chooses
a suitable vector v for a vertex v1 in the orbit and for the vertices g(v1),
g ∈ G0, one uses the vector g(v).

For a vertex v1 such that the stabilizer Ge ⊂ G0 of the edge e 3 v0,v
is non-trivial, one must choose the vector v such that the group 〈ρv, Ge〉 is
finite and as defined in the amalgam Γ.

Let us first consider the edge e with Ge = C2(q+1). Let α ∈ (L◦)∗ be a unit
root such that αq+1 = −1. We consider the edge e 3 v0 that corresponds
to the isotropic vector (0, 1, α) mod π. Then Ge = 〈gα〉, where gα acts by
gα((x0, x1, x2)) = (x0, α

q−1x2,−x1).
The vector v ∈M0

∼= (L◦)3 can be choosen to be v = (0, 1, v2) orthogonal
to the vector (1, 0, 0). We take v2 to be v2 = α(1 + πu), with u ∈ (K◦)∗.
Then gα(v) = (0, αq(1 + πu),−1) = (0, v2,−1). Therefore h(v, gα(v) = 0 and
the elements ρv, ρgα(v) and g2

α commute. In particular, 〈ρv, Ge〉 ∼= C2 n C2
q+1

holds.
Let us now consider the case Ge = C2. The vector v can be choosen

to be orthogonal to the vector (1,−1, 0). Then v = (1, 1, v2) such that
vq+1

2 ≡ −2 mod π. The vector v is stabilized by the group C2 that permutes
the coordinates x0 and x1. In particular, 〈ρv, Ge〉 ∼= C2 × Cq+1.

For q ≡ −1 mod 3 the groups Γv1 := 〈ρv, Ge〉, dB(v1,v0) = 1, together
with Γv0

∼= G0 define an embedding of the amalgam Γ into PU (3 ,L) as
a discrete subgroup. For each vertex v1 ∈ B that forms an edge with the
vertex v0, the added groups ρv ∼= Cq+1 act transitively on the edges e 3 v1. In
particular, the embedding of the group Γ is co-compact and acts transitively
on the hyperspecial vertices in B.

The proof of statement (ii) is similar to that of statement (i). The only
difference is the choice of the vector v that is stabilised by a group S3. Let
the group S3 act on the coordinates by permutation. Then the only vector v
fixed by the group S3 is the vector v = (1, 1, 1). Then h(v, v) = 3. Therefore
it is necessary that π = 3 holds. In particular, for p = 3 the embedding of the
group Γ only acts transitively on the hyperspecial vertices, if the extension
K ⊃ Q3 is unramified.

13.8 Remark. Arithmeticity. For q = 3, 5 the groups Γ are isomorphic to
an arithmetic group. Let q = 3 and let L := Q3(i) with i2 = −1. The group
Γ equals Γ = (C2 n (C4)2) ∗C8 (S3 n (C4)2) ∗S3 (S3×C4). Let Λ be the lattice
Λ := ⊕2

j=0Z[i] · ej. To embed the group Γ, one can use the vectors (1 + i, 1, 0)
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and (1, 1, 1) to define the elements ρv. Then Γ ∼= PU(Λ[1
3
]).

Let q = 5 and let ω be a third root of unity, i.e. ω3 = 1. Let L = Q5(ω) =
Q5(
√
−3). One has Γ = (C2 n (C6)2) ∗C12 (S3 n (C6)2) ∗C2 (C2 × C6). Let Λ

be the lattice Λ := ⊕2
j=0Z[ω] · ej. To embed the group Γ, one can use the

vectors (2, 1, 0) and (1 − ω, 1, 1) ∈ Λ to define the elements ρv ∈ Γ. Then
Γ ∼= PU(Λ[1

5
]).

13.9 Definition. The group Γ′. Let the group Γ′ be the amalgam of G′0
∼=

C2
q+1 with three groups C2

q+1 along groups Cq+1 and with q − 2 groups Cq+1

along 1. The amalgam Γ′ is defined as being:
C2
q+1∗Cq+1

Γ′ :=C2
q+1 ∗Cq+1 C

2
q+1 ∗Cq+1 C

2
q+1∗ . . . ∗

Cq+1 Cq+1︸ ︷︷ ︸
q − 2

13.10 Remark. Relation between the groups Γ and Γ′. If q 6≡ 1 mod 3,
then there exists a map Γ −→ S3, such that the kernel is isomorphic to Γ′.
Using remark 13.8, it follows that the group Γ′ is isomorphic to an arithmetic
group if q = 3 and q = 5.

13.11 Proposition. The group Γ′ can be embedded into PU (3 ,L) as a dis-
crete co-compact subgroup that acts transitively on the hyperspecial vertices
of B.

Proof. Similar to the proof of prop. 13.7.

13.12 Proposition. i) If q ≡ 2 mod 3, then there is a bijection between
G0-invariant spreads and Γ-invariant complete transversal coverings.

ii) There exists a bijection between G′0-invariant spreads and Γ′-invariant
complete transversal coverings.

Proof. We only prove the proposition for Γ and G0. The proof for Γ′ and G′0
is entirely identical.

So let us assume that q ≡ 2 mod 3. We first define a map from Γ-
invariant transversal coverings to G0-invariant spreads and a map from G0-
invariant spreads to Γ-invariant transversal coverings. Then we will show
that the maps indeed define a bijection.
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We fix a G0-equivariant bijection between edges e 3 v0 and isotropic
points in P2(`). The edges e 3 v0 contained in a subbuilding b ⊂ B are
contained a line a⊥b

∼= P1
` . The buildings b 3 v0 contained in a Γ-invariant

complete transversal covering T define a set of lines {a⊥b | b ∈ T , v0 ∈ b}.
Since T is a Γ-invariant complete transversal covering, the set of lines defines
a G0-invariant spread.

Let S be a G0-invariant spread. Then each isotropic point y ∈ P2(`) is
contained in a unique line a⊥y ∈ S. The point ay ∈ P2(`) is anisotropic with
at least one coordinate equal to zero. Let e 3 v0 be the edge that corresponds
to the isotropic point y. Then define the building b ∈ T containing the edge
e 3 v0 as being the building of the stabiliser of the anisotropic xb. The point
xb is the unique point such that the coordinates (xb)i = 0 and, moreover
h(xb, v) = 0. Here v is the vector that defines the element ρv ∈ Γ that
preserves the vertex v1 ∈ e.

To prove that the maps indeed define a bijection it is sufficient to show
that the only Γ-invariant transversal coverings are the ones given by the map.
Let us assume that T is not as given by the second map. Then there either
exists a building b ∈ T , v0 ∈ b such that xb has only non-zero coordinates
or h(xb, v) ≡ 0 mod π but not h(xb, v) = 0. In the first case Γv0 ·b consists
of more than q2 − q + 1 buildings all containing the vertex v0. Hence this
cannot be.

In the second case Γv1 · b consists of more than one building and these
buildings contain all the edges e 3 v1. This cannot be. Hence the two maps
defined above together give indeed a bijection.

13.13 Proposition. Let Γ and Γ′ be embedded into PU (3 ,L) as in prop.
13.7 and 13.11.

i) If q ≡ 2 mod 3, then the quotient B/Γ is a tree that consists of one
hyperspecial vertex v0 and q+7

6
non-hyperspecial vertices that form an

edge with the vertex v0.

ii) The quotient B/Γ′ is a tree that consists of one hyperspecial vertex v0

and q + 1 non-hyperspecial vertices that form an edge with the vertex
v0.

Proof. This follows directly from the fact that the groups Γ (with q ≡ 2
mod 3) and Γ′ act transitively on hyperspecial vertices in B and from the
action of G0 and G′0 on isotropic points.
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13.14 Definition. Normal subgroups without elements of finite order. Let
ϕ : Γ → Γv0

∼= G0 be a map such that no element of finite order is in
the kernel. Since all the elements ρv ∈ Γ have order q + 1, such a map ϕ
exists. Let ∆ ⊂ Γ be the kernel ∆ := ker(ϕ). By construction the group ∆
contains no elements of finite order. Moreover, the group ∆ acts transitively
on hyperspecial vertices v ∈ B.

Let ϕ′ : Γ′ → Γ′v0
∼= G′0 be a map such that no element of finite order is

in the kernel. Since all the elements ρv ∈ Γ′ have order q + 1, such a map
ϕ exists. Let ∆′ ⊂ Γ′ be the kernel ∆ := ker(ϕ). The group ∆′ contains no
elements of finite order and acts transitively on hyperspecial vertices v ∈ B.

13.15 Proposition. i) If q ≡ 2 mod 3, then the quotient B/∆ consists
of one hyperspecial vertex v0 and q2 − q + 1 non-hyperspecial vertices
that form q + 1 edges with the vertex v0.

ii) The quotient B/∆′ consists of one hyperspecial vertex v0 and q2− q+ 1
non-hyperspecial vertices that form q + 1 edges with the vertex v0.

Proof. Direct calculation.

13.16 Definition. Minimal Γ- and Γ′-adapted transversal coverings. One
can use the minimal G0-adapted and G′0-adapted partial spreads to define
Γ-adapted and Γ′-adapted transversal which are non-complete. Let q ≡ 2
mod 3. Then we define Tmin as being the transversal covering of B defined
by the vectors {γ((1, 0, 0)), γ((1, 1, 0)) | γ ∈ Γ}. Then Tmin is a minimal
Γ-adapted transversal covering.

We define T ′min as being the transversal covering of B defined by the
vectors {γ((1, 0, 0)), γ((0, 1, 0)), γ((0, 0, 1)) | γ ∈ Γ′}. Then T ′min is a minimal
Γ′-adapted transversal covering.

13.3 Algebraic curves

We use the groups ∆ ⊂ Γ and ∆′ ⊂ Γ′ to construct algebraic curves. We
assume that the groups Γ and Γ′ are embedded into PU (3 ,L) as described
in prop. 13.7 and 13.11. Both the complete transversal covering and the
minimal Γ- and Γ′-adapted transversal coverings are used. We determine in
each case the genus and show that the quotient of the curve by the group
Γ/∆ (resp. Γ′/∆′) is a projective line P1

L.
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13.17 Proposition. Let q ≡ 2 mod 3 and let T be a complete Γ-invariant
transversal covering and let Y be the corresponding analytic space.

i) Y/Γ ∼= P1
L.

ii) The reduction of the quotient Y/∆ consists of q2−q+2 components H.
Each component corresponding to a non-hyperspecial vertex intersects
the unique component H corresponding to a hyperspecial vertex in q+1
distinct `-valued points.

iii) The quotient map Y/∆ −→ Y/Γ ∼= P1
L has q2−q+22

6
branch points.

There are two branch points with group C2, one point with group C3

and q2−q+4
6

points with group Cq+1.

iv) g(Y/∆) = q4+q2

2
.

Proof. The quotient of the hermitian curve H by a group Cq+1 or C2
q+1 where

the groups Cq+1 stabilize an anisotropic vector is a P1
` . Since the stabilizer

of each component H contains a normal subgroup of this type, the quotient
of each component is a curve P1

` . Since the quotient graph B/Γ is a tree,
statement (i) follows.

Statement (ii) is clear.
Let us now consider statement (iii). The branch groups of the map

Y/∆ −→ Y/Γ are finite and stabilise a vertex v ∈ B. Therefore they equal
branch groups of the maps H −→ H/Γv

∼= P1
` . A branch point of the map

H −→ H/Γv is contained in the generic fibre of Y (or Y/∆) if and only if
the corresponding branch group does not stabilise an edge e 3 v. To prove
(iii) it is therefore sufficient to determine the branch points and groups for
each component of the reduction of Y/Γ.

The quotient map H −→ H/G0 = P1
` has three branch points and branch

groups C2(q+1), C3 and C2. The groups C2(q+1) and C2 stabilise an edge e and
the corresponding points are omitted from the generic fibre of Y . Therefore
the corresponding component P1

` of the reduction of Y/Γ gives a single branch
point stabilized by a group C3.

The quotient map H −→ H/(C2 n C2
q+1) = P1

` has three branch points
and branch groups C2(q+1), Cq+1 and C2. The group C2(q+1) stabilises an edge
e and the corresponding point is omitted from the generic fibre of Y . Hence
the corresponding component P1

` of the reduction of Y/Γ contributes one
branch point with group C2 and one branch point with group Cq+1.
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The component P1
` in Y/Γ coming from a mapH −→ H/(C2×Cq+1) gives

one branch point with group C2 and q+1
2

points with branch group Cq+1. The
q−5

6
components P1

` in Y/Γ coming from a map H −→ H/Cq+1 give each q+1
branch points with group Cq+1. We have now determined the contribution
of each component of the reduction of Y/Γ to the set of branch points and
groups of the map Y/∆ −→ Y/Γ. Statement (ii) is obtained by addition of
these contributions.

Statement (iv) follows from statement (iii) and the Riemann-Hurwitz
formula or from statement (ii) and the formula for the genus obtained in
prop. 11.8.

13.18 Proposition. Let q ≡ 2 mod 3 and let Ymin be the rigid space cor-
responding to the minimal Γ-adapted transversal covering Tmin.

i) The quotient Ymin/Γ is a projective line P1
L.

ii) The reduction of the quotient Ymin/∆ consists of 3q+ 7 components H
and q2−4q−5 components P`. Each component corresponding to a non-
hyperspecial vertex intersects the unique component H corresponding to
a hyperspecial vertex in q + 1 distinct `-valued points.

iii) The quotient map Ymin/∆ −→ Ymin/Γ ∼= P1
L has 5q+17

6
branch points.

There are 5q−1
6

branch points with branch group Cq+1, one point with
branch group C3 and two points with branch group C2.

iv) The genus of the quotient Ymin/∆ is g(Ymin/∆) = 5q3+2q2−5q
2

.

Proof. The quotient of the hermitian curve H by a group Cq+1 or C2
q+1 where

the groups Cq+1 stabilize an anisotropic vector is a P1
` . Since the stabilizer

of each component H contains a normal subgroup of this type, the quotient
of each component is a curve P1

` . Since the quotient graph B/Γ is a tree,
statement (i) follows.

To prove statement (ii), one observes that the vertex v0 is contained in
3(q+2) buildings b ∈ T . Therefore quotient Ymin/∆ consists of 1+3(q+2) =

3q + 7 components H and q3+1
q+1
− 3(q + 2) = q2 − 4q − 5 components P`.

Let us now prove statement (iii) by determining the contribution of each
component of the reduction of Ymin/Γ The component stabilized by the group
S3nC2

q+1 gives a single branch point stabilized by a group C3. The component
stabilized by a group C2 n C2

q+1 gives one branch point with group C2 and
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one branch point with group Cq+1. The component stabilized by a group
C2×Cq+1 gives one branch point with group C2 and q+1

2
points with branch

group Cq+1. The q−5
6

components P1
` stabilized by a group Cq+1 give each

two branch points with group Cq+1.
Statement (iv) follows from statement (iii) and the Riemann-Hurwitz

formula or from statement (ii) and the formula for the genus obtained in
prop. 11.8.

13.19 Proposition. Let T ′ be a complete Γ′-invariant transversal covering
and let Y ′ be the corresponding analytic space.

i) Y ′/Γ′ ∼= P1
L.

ii) The reduction of the quotient Y ′/∆′ consists of q2−q+2 components H.
Each component corresponding to a non-hyperspecial vertex intersects
the unique component H corresponding to a hyperspecial vertex in q+1
distinct `-valued points.

iii) The quotient map Y ′/∆′ −→ Y ′/Γ′ ∼= P1
L has q2 − q + 4 branch points

with branch group Cq+1.

iv) g(Y ′/∆′) = q4+q2

2
.

Proof. The proof of statements (i) and (ii) is as in the proposition above.
Let us now prove statement (iii) by determining the contribution of each
component of the reduction of Y ′/Γ′. The group Γ′v0

acts without fixed
points on the component H. The three non-hyperspecial vertices v1 with
stabiliser C2

q+1 give each two branch point with stabiliser Cq+1. The q − 2
components H corresponding to a non-hyperspecial vertex v1 with stabiliser
Γv1
∼= Cq+1 give each q+1 branch points with stabiliser Cq+1. Hence we have

in total q2 − q + 4 branch points with branch group Cq+1.
To prove statement (iv) we use the formula g(Y ′/∆′) = 1+ne +

∑
v(gv−

1) = q4+q2

2

13.20 Proposition. Let Y ′min the rigid space belonging to the minimal Γ′-
adapted transversal covering T ′min. The following statements hold.

i) Y ′min/Γ′ ∼= P1
L.
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ii) The reduction of the quotient Y ′min/∆′ consists of 4 hermitian curves H
and q2− q−2 lines P1

` . Each component intersects the hermitian curve
H that corresponds to the vertex v0 in q+1 distinct ` valued (isotropic)
points.

iii) The quotient map Y ′min/∆′ −→ Y ′min/Γ′ ∼= P1
L has 2(q+1) branch points

with branch group Cq+1.

iv) g(Y ′min/∆′) = q3 + q2 − q.

Proof. Statement (i) follows from the fact that the quotient of a hermitian
curve H by a group Cq+1 is projective line P1

L. Indeed, it follows that the
reduction of quotient Y ′min/Γ is a tree of components P1

` .
Statements (ii) and (iii) are proved as in the previous proposition. One

easily sees that all branch points have stabilizer Cq+1.
Statement (iv) follows from statement (ii) and the Riemann-Hurwitz for-

mula.
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